260 research outputs found

    Multidetachment analogue models of fold reactivation in transpression : the NW Persian Gulf

    Get PDF
    Two deformation events have been documented in the NW Persian Gulf during the Late Cretaceous and the Late Cenozoic. The most distinctive feature in this part of the Persian Gulf is the reactivation of the Late Cretaceous NNE-SSW Arabian trending folds by NE-SW shortening during the Late Cenozoic Zagros orogeny. In general, if a set of folds with horizontal axes is shortened roughly parallel to its fold axis, a dome-basin fold interference pattern is produced. In the NW Persian Gulf, reactivation of some old folds occurred instead of a fold interference pattern. Reactivation may be influenced by the following factors: i) the presence of incompetent layers (i.e. evaporites), ii) a variable overburden, iii) basement faults, and iv) obliquity between the younger deformation shortening axis and fold axis. It is this last factor that we investigated by means of analogue modelling. The experimental apparatus is similar to that commonly used for experiments with brittle-ductile systems at the Laboratory of Experimental Tectonics of Géosciences Rennes. The model consisted of an alternation of ductile and brittle horizontal layers with a stratigraphy similar to the one found in the NW Persian Gulf. The model was deformed by two deformation events with an angle a between the two directions of shortening. After deformation, the resulting structure resembled a fold facing the static wall with internal thrust faults and detachment faults arranged into a geometry similar to a fish tail. In the second shortening event, the fold was reactivated without formation of an interference pattern. Moreover, the displacement on both the reactivated and newly formed faults varied between almost pure thrust faults for low a and oblique thrust faults with a strike-slip component for high a. The models suggest that the presence of incompetent layers plays an important role in fold reactivation and confirm that basement faults are not necessary

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST

    Influence of Neutron Enrichment on Disintegration Modes of Compound Nuclei

    Full text link
    Cross sections, kinetic energy and angular distributions of fragments with charge 6\leZ\le28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influence of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models.Comment: 8 pages, 1 figure, paper presented at the First Workshop on "State of the Art in Nuclear Cluster Physics" 13-16 May, 2008, at Strasbourg, France (SOTANCP2008) and accepted for publication at International Journal of Modern Physics E (Special Issue), Proceedings of SOTANCP2008 (to be published

    Structure of low-lying states of 10,11^{10,11}C from proton elastic and inelastic scattering

    Get PDF
    NESTER PTH, expérience GANIL, équipement SISSITo probe the ground state and transition densities, elastic and inelastic scattering on a proton target were measured in inverse kinematics for the unstable 10^{10}C and 11^{11}C nuclei at 45.3 and 40.6 MeV/nucleon, respectively. The detection of the recoil proton was performed by the MUST telescope array, in coincidence with a wall of scintillators for the quasiprojectile. The differential cross sections for elastic and inelastic scattering to the first excited states are compared to the optical model calculations performed within the framework of the microscopic nucleon-nucleus Jeukenne-Lejeune-Mahaux potential. Elastic scattering is sensitive to the matter-root-mean square radius found to be 2.42±\pm0.1 and 2.33±\pm0.1 fm, for 10,11^{10,11}C, respectively. The transition densities from cluster and mean-field models are tested, and the cluster model predicts the correct order of magnitude of cross sections for the transitions of both isotopes. Using the Bohr-Mottelson prescription, a profile for the 10^{10}C transition density from the 0+0^+ ground to the 21+2_1^+ state is deduced from the data. The corresponding neutron transition matrix element is extracted: Mn=5.51±\pm1.09 fm2^2

    Multifragmentation in Xe(50A MeV)+Sn Confrontation of theory and data

    Get PDF
    We compare in detail central collisions Xe(50A MeV) + Sn, recently measured by the INDRA collaboration, with the Quantum Molecular Dynamics (QMD) model in order to identify the reaction mechanism which leads to multifragmentation. We find that QMD describes the data quite well, in the projectile/target region as well as in the midrapidity zone where also statistical models can be and have been employed. The agreement between QMD and data allows to use this dynamical model to investigate the reaction in detail. We arrive at the following observations: a) the in medium nucleon nucleon cross section is not significantly different from the free cross section, b) even the most central collisions have a binary character, c) most of the fragments are produced in the central collisions and d) the simulations as well as the data show a strong attractive in-plane flow resembling deep inelastic collisions e) at midrapidity the results from QMD and those from statistical model calculations agree for almost all observables with the exception of d2σdZdE{d^2 \sigma \over dZdE}. This renders it difficult to extract the reaction mechanism from midrapidity fragments only. According to the simulations the reaction shows a very early formation of fragments, even in central collisions, which pass through the reaction zone without being destroyed. The final transverse momentum of the fragments is very close to the initial one and due to the Fermi motion. A heating up of the systems is not observed and hence a thermal origin of the spectra cannot be confirmed.Comment: figures 1 and 2 changed (no more ps -errors

    Resonances of 6He via the 8He(p,t)6He reaction

    Get PDF
    We investigated the low-lying spectroscopy of 6He via the 2-neutron transfer reaction induced by the 8He SPIRAL beam at 15.4 A.MeV on a proton-rich target. The light charged recoil particles produced by the direct reactions were measured using theMUST2 Si-strip telescope array. Two new resonances were observed above the known 2+ state in 6He, and the angular momentum transfer was deduced through the analysis of the angular distributions. Results are discussed in comparison with the recent calculations of various nuclear structure theories which include the coupling to the continuum technique and to the ones which give an understanding of the cluster correlations in the light weakly-bound nuclei

    Resonances of 6He via the 8He(p,t)6He reaction

    Get PDF
    CERN-Proceedings-2010-001 available at http://www.fluka.org/Varenna2009/procmat.htmInternational audienceWe investigated the low-lying spectroscopy of 6He via the 2-neutron transfer reaction induced by the 8He SPIRAL beam at 15.4 A.MeV on a proton-rich target. The light charged recoil particles produced by the direct reactions were measured using theMUST2 Si-strip telescope array. Two new resonances were observed above the known 2+ state in 6He, and the angular momentum transfer was deduced through the analysis of the angular distributions. Results are discussed in comparison with the recent calculations of various nuclear structure theories which include the coupling to the continuum technique and to the ones which give an understanding of the cluster correlations in the light weakly-bound nuclei

    6He + 9Be reactions at 16.8 MeV

    Get PDF
    6 pags.; 6 figs.Reactions of a 16.8 MeV 6He beam with a 9Be target have been investigated using highly segmented detector setup covering a large solid angle. Data on elastic and quasi-free scattering, as well as two-neutron transfer, are reported. The results for elastic scattering are fairly well reproduced by a CDCC calculation, in agreement with the interpretation of a breakup effect already observed for the scattering of 6He on other light targets. Exotic quasi-free scattering of 6He on α-cluster in 9Be is clearly observed. Inclusive and coincident events were used to extract information on the two-neutron transfer reaction 9Be(6He, α)11Be. Sequential decay of the 11Be state at the excitation energy Ex = 10.6 MeV through different channels is discussed. © 2010 SIF, Springer-Verlag Berlin Heidelberg.We would like to thank the technical staff at the RNB facility at the CRC-Louvain-la-Neuve for their valuable contributions to this work.Peer Reviewe

    Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV

    Full text link
    The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted in the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario

    X-ray fluorescence from the element with atomic number Z = 120

    Get PDF
    Accepted for publication in Physical Review LettersAn atomic clock based on X-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238U + 64Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z=120 compound nuclei. The filling of these vacancies accompanied by X-ray emission with energies characteristic of Z=120 can take place only if the atomic transitions occur before nuclear fission. Therefore, the X-ray yield characteristic of the united atom with 120 protons is strongly related to the fission time and to the vacancy lifetimes. K X-rays from the element with Z = 120 have been unambiguously identified from a coupled analysis of the involved nuclear reaction mechanisms and of the measured photon spectra. A minimum mean fission time τ\tau_f$ = 2.5×10−18s has been deduced for Z=120 from the measured X-ray multiplicity
    corecore