98 research outputs found

    Intéractions aérosols-rayonnement-nuages et variabilité climatique en méditerranée - Approche par la modelisation régionale couplée

    Get PDF
    Le bassin mĂ©diterranĂ©en est sujet Ă  de nombreuses sources d'aĂ©rosols prĂ©sentant une variabilitĂ© spatio-temporelle Ă©levĂ©e. Ces aĂ©rosols interagissent de maniĂšre directe avec les rayonnements solaire et thermique, et de maniĂšre indirecte avec les nuages et la dynamique atmosphĂ©rique. Ils peuvent donc avoir un impact important sur le climat de cette rĂ©gion. Ce travail de thĂšse, Ă  la frontiĂšre entre les projets HyMeX et ChArMEx, considĂšre une approche par la modĂ©lisation rĂ©gionale couplĂ©e pour rĂ©pondre aux questions des interactions aĂ©rosols-rayonnement-nuages par rapport Ă  la variabilitĂ© climatique de la rĂ©gion mĂ©diterranĂ©enne. Afin de mieux caractĂ©riser les aĂ©rosols mĂ©diterranĂ©ens, une nouvelle climatologie mensuelle et interannuelle d'Ă©paisseur optique a Ă©tĂ© dĂ©veloppĂ©e Ă  partir d'une combinaison de produits satellites et de modĂšles. Ce jeu de donnĂ©es, disponible pour tous les modĂšles rĂ©gionaux de climat en MĂ©diterranĂ©e sur la pĂ©riode 1979-2012, a Ă©tĂ© mis au point dans le but d'obtenir la meilleure estimation possible du contenu atmosphĂ©rique en aĂ©rosols pour les cinq types considĂ©rĂ©s (sulfates, carbone suie et organique, poussiĂšres dĂ©sertiques et sels marins). Des ensembles de simulations rĂ©alisĂ©es sur la pĂ©riode 2003-2009 avec et sans aĂ©rosols montrent un impact majeur sur le climat rĂ©gional. Cet impact se caractĂ©rise par un forçage radiatif nĂ©gatif en surface (dĂ» Ă  la diffusion et l'absorption du rayonnement solaire incident) de -15 W.m−2 en moyenne annuelle sur la mer MĂ©diterranĂ©e, par un refroidissement induit en surface Ă  la fois sur mer et sur terre de l'ordre de 0.5◩C en moyenne annuelle, par une diminution moyenne des prĂ©cipitations ainsi que par des changements de nĂ©bulositĂ©. Le cycle saisonnier et les structures spatiales du climat mĂ©diterranĂ©en sont ainsi significativement modifiĂ©s, ainsi que certaines situations spĂ©cifiques comme la canicule de juillet 2006 qui a Ă©tĂ© renforcĂ©e par la prĂ©sence d'aĂ©rosols dĂ©sertiques. Le rĂŽle essentiel de la tempĂ©rature de surface de la mer MĂ©diterranĂ©e dans la rĂ©ponse du climat aux aĂ©rosols est mis en Ă©vidence, et permet de comprendre les modifications induites des flux air-mer (notamment la diminution de la perte en chaleur latente) et ses consĂ©quences sur le climat rĂ©gional. La convection ocĂ©anique en mer MĂ©diterranĂ©e est Ă©galement renforcĂ©e par la prĂ©sence d'aĂ©rosols. En outre, on dĂ©montre que la diminution des aĂ©rosols anthropiques observĂ©e depuis plus de trente ans a contribuĂ© significativement aux tendances climatiques de rayonnement (reprĂ©sentant 81 ± 15 % de l'Ă©claircissement) et de tempĂ©rature (reprĂ©sentant 23 ± 5 % du rĂ©chauffement) observĂ©es en Europe et en MĂ©diterranĂ©e. D'autre part, un schĂ©ma interactif d'aĂ©rosols a Ă©tĂ© mis en place dans le modĂšle atmosphĂ©rique ALADIN-Climat afin de pouvoir comprendre les processus liĂ©s aux aĂ©rosols Ă  l'Ă©chelle quotidienne. On montre ici la capacitĂ© de ce schĂ©ma de simuler de maniĂšre rĂ©aliste les aĂ©rosols prĂ©sents en MĂ©diterranĂ©e, notamment dans le cas des intrusions de poussiĂšres dĂ©sertiques observĂ©es pendant la campagne de mesures ChArMEx/TRAQA. Un exercice d'intercomparaison avec d'autres modĂšles intĂ©grant les aĂ©rosols dĂ©sertiques confirme la performance du nouveau schĂ©ma. De plus, utiliser un schĂ©ma prognostique d'aĂ©rosols au lieu d'une climatologie mensuelle permet de mieux reproduire les variations quotidiennes et en particulier les extrĂȘmes de rayonnement et de tempĂ©rature en surface. Cela induit aussi une modification du climat moyen, dans la mesure oĂč les variations des aĂ©rosols et de leurs effets dĂ©pendent des rĂ©gimes de temps et de la nĂ©bulositĂ©. Cette thĂšse conclut ainsi Ă  la nĂ©cessitĂ© pour les systĂšmes climatiques de modĂ©lisation rĂ©gionale en MĂ©diterranĂ©e de bien prendre en compte les effets radiatifs des aĂ©rosols et leur variabilitĂ© spatiotemporelle, y compris Ă  haute frĂ©quence. Les impacts de ces effets radiatifs sur de nombreux paramĂštres (rayonnement, tempĂ©rature, humiditĂ©, flux air-mer, circulation ocĂ©anique, etc.) sont en effet dĂ©montrĂ©s Ă  diffĂ©rentes Ă©chelles d'espace et de temps (variabilitĂ© quotidienne, cycle saisonnier, tendances climatiques, extrĂȘmes, structures spatiales). Ce travail a aussi montrĂ© que le couplage entre l'atmosphĂšre et la mer MĂ©diterranĂ©e est indispensable pour des Ă©tudes aĂ©rosols-climat dans cette rĂ©gion. ABSTRACT : The Mediterranean basin is affected by numerous and various aerosols which have a high spatiotemporal variability. These aerosols directly interact with solar and thermal radiation, and indirectly with clouds and atmospheric dynamics. Therefore they can have an important impact on the regional climate. This work, located at the boundary between the ChArMEx and HyMeX programs, considers a coupled regional modeling approach in order to address the questions of the aerosol-radiation-cloud interactions with regards to the climate variability over the Mediterranean. In order to improve the characterization of Mediterranean aerosols, a new interannual monthly climatology of aerosol optical depth has been developed from a blended product based on both satellitederived and model-simulated datasets. This dataset, available for every regional climate model over the Mediterranean for the 1979-2012 period, has been built to obtain the best possible estimate of the atmospheric aerosol content for the five species at stake (sulfate, black carbon, organic matter, desert dust and sea salt particles). Simulation ensembles, which have been carried out over the 2003-2009 period with and without aerosols, show a major impact on the regional climate. This impact is characterized by a negative surface radiative forcing (due to the absorption and the scattering of the solar incident radiation) of -15 W.m−2 on annual average over the Mediterranean Sea, an induced surface cooling both over land and sea of about -0.5◩C on annual average, a decrease in precipitation as well as cloud cover changes. The seasonal cycle and the spatial patterns of the Mediterranean climate are significantly modified, as well as some specific situations such as the heat wave in July 2006 strengthened by the presence of desert dust particles. The essential role of the Mediterranean sea surface temperature is highlighted, and enables to understand the induced changes on air-sea fluxes (notably the decrease in the latent heat loss) and the consequences on regional climate. Oceanic convection is also strengthened by aerosols. In addition, the decrease in anthropogenic aerosols observed for more than thirty years is shown to significantly contribute to the observed Euro-Mediterranean climatic trends in terms of surface radiation (representing 81 ± 15 % of the brightening) and temperature (representing 23 ± 5 % of the warming). Besides, an interactive aerosol scheme has been developed in the atmospheric model ALADINClimate in order to better understand aerosol processes at the daily scale. This scheme shows its ability to represent correctly the aerosol patterns over the Mediterranean, especially with regards to dust outbreaks that were measured during the ChArMEx/TRAQA field campaign. An intercomparison exercise with several dust models confirms the performance of the new scheme. Moreover, the use of a prognostic aerosol scheme instead of a monthly climatology enables to better reproduce the daily variations of surface radiation and temperature and related extremes. This also leads to changes in the mean climate, insofar as aerosol variations and their effects depend on weather regimes and cloud cover. Finally this study concludes with the need for regional climate system models over the Mediterranean to take into account the radiative aerosol effects and their spatio-temporal variability, including at high frequency. The impacts of these radiative effects on numerous parameters (radiation, temperature, humidity, ocean-atmosphere fluxes, oceanic circulation, etc.) are indeed shown and understood at different space and time scales (daily variability, seasonal cycle, climate trends, spatial structures). This work has also shown the importance of the coupling between the atmosphere and the Mediterranean Sea for aerosol-climate studies in this region

    Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980

    Full text link
    Since the 1980s anthropogenic aerosols have been considerably reduced in Europe and the Mediterranean area. This decrease is often considered as the likely cause of the brightening effect observed over the same period. This phenomenon is however hardly reproduced by global and regional climate models. Here we use an original approach based on reanalysis-driven coupled regional climate system modeling to show that aerosol changes explain 81±16% of the brightening and 23±5% of the surface warming simulated for the period 1980-2012 over Europe. The direct aerosol effect is found to dominate in the magnitude of the simulated brightening. The comparison between regional simulations and homogenized ground-based observations reveals that observed surface solar radiation and land and sea surface temperature spatiotemporal variations over the Euro-Mediterranean region are only reproduced when simulations include the realistic aerosol variations. Key Points A regional climate system model over the Euro-Mediterranean includes aerosols Aerosol changes are needed to reproduce observed climate trends since 1980 Aerosols play an essential role in the brightening and warming since 1980This work is a contribution to the HyMeX (HYdrological cycle in the Mediterranean EXperiment) and ChArMEx (Chemistry-Aerosol Mediterranean Experiment) program through INSU-MISTRALS support and the Med-CORDEX initiative (COordinated Regional climate Downscaling EXperiment Mediterranean region, www.medcordex.eu). This research has been supported by the French National Research Agency (ANR) project REMEMBER (contract ANR-12-SENV-001). Gridded temperature data sets, GISS and CRUTEM, have been provided, respectively, by the NASA Goddard Institute for Space Studies and the Met Office Hadley Center. HISTALP temperature data sets have been downloaded from http://www.zamg.ac.at/histalp. We also thank Brigitte Dubuisson and Anne-Laure Gibelin for the availability of homogenized temperature series in France, and we acknowledge the data providers in the ECA&D project. A. S. L. was supported by the "Secretaria per a Universitats i Recerca del Departament d'Economia i Coneixement, de la Generalitat de Catalunya i del programa Cofund de les Accions Marie Curie del 7e Programa marc d'R+D de la Unio Europea" (2011 BP-B 00078), the postdoctoral fellowship JCI-2012-12508, and the project NUCLIERSOL (CGL2010-18546

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models

    Get PDF
    Characteristics and trends of surface ocean dimethylsulfide (DMS) concentrations and fluxes into the atmosphere of four Earth system models (ESMs: CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM, and UKESM1-0-LL) are analysed over the recent past (1980–2009) and into the future, using Coupled Model Intercomparison Project 6 (CMIP6) simulations. The DMS concentrations in historical simulations systematically underestimate the most widely used observed climatology but compare more favourably against two recent observation-based datasets. The models better reproduce observations in mid to high latitudes, as well as in polar and westerlies marine biomes. The resulting multi-model estimate of contemporary global ocean DMS emissions is 16–24 Tg S yr−1, which is narrower than the observational-derived range of 16 to 28 Tg S yr−1. The four models disagree on the sign of the trend of the global DMS flux from 1980 onwards, with two models showing an increase and two models a decrease. At the global scale, these trends are dominated by changes in surface DMS concentrations in all models, irrespective of the air–sea flux parameterisation used. In turn, three models consistently show that changes in DMS concentrations are correlated with changes in marine productivity; however, marine productivity is poorly constrained in the current generation of ESMs, thus limiting the predictive ability of this relationship. In contrast, a consensus is found among all models over polar latitudes where an increasing trend is predominantly driven by the retreating sea-ice extent. However, the magnitude of this trend between models differs by a factor of 3, from 2.9 to 9.2 Gg S decade−1 over the period 1980–2014, which is at the low end of a recent satellite-derived analysis. Similar increasing trends are found in climate projections over the 21st century
    • 

    corecore