73 research outputs found

    Field trip stop descriptions

    Get PDF
    Fifteen sites within the channeled scabland were selected as stops with the dual aim of visiting locations critical to the arguments for a catastrophic flood origin of the scablands, as well as permitting an examination of the variability in both erosional and depositional features. The stop locations are plotted on a generalized geologic map and their coordinates are given in table form

    Aerial field guide

    Get PDF
    There are two overflights planned for the field conference; one for the Cheney-Palouse tract of the eastern channeled scabland, the other covering the coulees and basins of the western region. The approximate flight lines are indicated on the accompanying LANDSAT images. The first flight will follow the eastern margin of this large scabland tract, passing a series of loess remnants, gravel bars and excavated rock basins. The western scablands overflight will provide a review of the structurally controlled complex pattern of large-scale erosion and deposition characteristic of the region between the upper Grand Coulee (Banks Lake) and the Pasco Basin

    The Channeled Scabland

    Get PDF
    The geomorphology and hydrodynamics of high velocity flood erosion in the channeled scabland of the Columbia Basin are discussed

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    Hurricanes and climate in the Caribbean during the past 3700 years BP

    Get PDF
    International audienceA multiproxy analysis of lacustrine sediments cored in Grand-Case Pond at Saint-Martin, north of the Lesser Antilles archipelago, reveals three distinct climatic periods for the last 3700 years. From 3700 to ~2500 yr cal. BP and from 1150 yr cal. BP to the present, carbonate mud deposition occurred in connection with pond lowstands. These periods were also punctuated by severe drought events, marked by gypsum laminae, and hurricane landfalls, leading to marine sand inputs into the pond. The intermediate time interval, from 2500 to 1150 yr cal. BP, is typified by black organic mud deposition, suggesting that hypoxic to anoxic conditions prevailed at the pond bottom. These were probably linked with a perennial pond highstand and reflect more uniform and wetter climatic conditions than today. The carbon isotopic composition of the ostracod Perissocytheridea bisulcata shows that the lowest ÎŽ13C values are recorded during the hypoxic periods, as a consequence of bacterial recycling of isotopically depleted organic matter. Such a climatic history agrees closely with that documented from other records in the Caribbean area, such as the Cariaco Basin, central coast of Belize or Barbados. By constrast, discrepancies seem to emerge from the comparison between hurricane activity recorded at Saint-Martin on the one hand and Vieques (Puerto Rico) on the other hand. We explain this apparent contradiction by a balance between two distinct storm paths in response to latitudinal shifts of the Intertropical Convergence Zone (ITCZ). Stronger storm activity over the Gulf coast and the inner Caribbean Sea is favoured by a southern position of the ITCZ in connection with dry climatic conditions. Plausible links with the North Atlantic Oscillation (NAO) are also suggested

    Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract

    Get PDF
    High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls

    Provenance of Cretaceous through Eocene strata of the Four Corners region: Insights from detrital zircons in the San Juan Basin, New Mexico and Colorado

    Get PDF
    Cretaceous through Eocene strata of the Four Corners region provide an excellent record of changes in sediment provenance from Sevier thin-skinned thrusting through the formation of Laramide block uplifts and intra-foreland basins. During the ca. 125–50 Ma timespan, the San Juan Basin was flanked by the Sevier thrust belt to the west, the Mogollon highlands rift shoulder to the southwest, and was influenced by (ca. 75–50 Ma) Laramide tectonism, ultimately preserving a >6000 ft (>2000 m) sequence of continental, marginal-marine, and offshore marine sediments. In order to decipher the influences of these tectonic features on sediment delivery to the area, we evaluated 3228 U-Pb laser analyses from 32 detrital-zircon samples from across the entire San Juan Basin, of which 1520 analyses from 16 samples are newly reported herein. The detrital-zircon results indicate four stratigraphic intervals with internally consistent age peaks: (1) Lower Cretaceous Burro Canyon Formation, (2) Turonian (93.9–89.8 Ma) Gallup Sandstone through Campanian (83.6–72.1 Ma) Lewis Shale, (3) Campanian Pictured Cliffs Sandstone through Campanian Fruitland Formation, and (4) Campanian Kirtland Sandstone through Lower Eocene (56.0–47.8 Ma) San Jose Formation. Statistical analysis of the detrital-zircon results, in conjunction with paleocurrent data, reveals three distinct changes in sediment provenance. The first transition, between the Burro Canyon Formation and the Gallup Sandstone, reflects a change from predominantly reworked sediment from the Sevier thrust front, including uplifted Paleozoic sediments and Mesozoic eolian sandstones, to a mixed signature indicating both Sevier and Mogollon derivation. Deposition of the Pictured Cliffs Sandstone at ca. 75 Ma marks the beginning of the second transition and is indicated by the spate of near-depositional-age zircons, likely derived from the Laramide porphyry copper province of southern Arizona and southwestern New Mexico. Paleoflow indicators suggest the third change in provenance was complete by 65 Ma as recorded by the deposition of the Paleocene Ojo Alamo Sandstone. However, our new U-Pb detrital-zircon results indicate this transition initiated ∌8 m.y. earlier during deposition of the Campanian Kirtland Formation beginning ca. 73 Ma. This final change in provenance is interpreted to reflect the unroofing of surrounding Laramide basement blocks and a switch to local derivation. At this time, sediment entering the San Juan Basin was largely being generated from the nearby San Juan Mountains to the north-northwest, including uplift associated with early phases of Colorado mineral belt magmatism. Thus, the detrital-zircon spectra in the San Juan Basin document the transition from initial reworking of the Paleozoic and Mesozoic cratonal blanket to unroofing of distant basement-cored uplifts and Laramide plutonic rocks, then to more local Laramide uplifts.National Science Foundation (NSF grant EAR-1649254

    Stochastic Bayesian inversion of borehole self-potential measurements

    No full text
    International audienceWe propose a mechanistic model to compute and to invert self-potential log data in sedimentary basins and for near-surface geophysical applications. The framework of our analysis is founded in a unified electrical conductivity and self-potential petrophysical model. This model is based on an explicit dependence of these properties on porosity, water saturation, temperature, brine salinity, cementation and saturation (Archie) exponents and the volumetric charge density per unit pore volume associated with the clay fraction. This model is consistent with empirical laws widely used to interpret self-potential logs according to the two limiting cases corresponding to a clean sand and a pure shale. We present a finite element calculation of the self-potential signal produced by sand reservoirs interstratified with shale layers. For layered strata normal to the well, we demonstrate that the 3-D Poisson equation governing the occurrence of self-potentials in a borehole can be simplified to a 2-D axisymmetric partial differential equation solved at each depth providing a common self-potential reference can be defined between these different depths. This simplification is very accurate as long as the vertical salinity gradients are not too strong over distances corresponding to the borehole diameter. The inversion of borehole data (self-potential, resistivity and density well logs, incorporating information derived from neutron porosity and gamma-ray log data) is performed with the Adaptive Metropolis Algorithm (AMA). We start by formulating an approximate analytical solution for the six model parameters (water saturation, porosity, the two Archie's exponents, the pore water conductivity and the volumetric charge density of the diffuse layer). This solution is used for the AMA algorithm to converge in less than 60 iterations at each depth for the real case study. The posterior probability distributions are computed using 50-60 additional realizations. Our approach is applied to a case study concerning a small sedimentary sequence in the Piceance Basin, Colorado, in a series of tight gas reservoirs

    Geologic response to hurricane impact on low-profile Gulf Coast barriers.

    No full text
    Vertical aerial photography obtained in 1976 and again 9 days after hurricane Frederic made landfall in September 1979 combined with multiple reconnaissance overflights and ground surveys provided the data base for determination of shoreline erosion and the distribution of hurricane scour and sedimentary deposits. Erosion of the Gulf beach at Dauphin Island proved to follow a predictable pattern controlled by nearshore bathymetry whereas retreat of the shoreline of the Mississippi Sound margin was an unexpected occurrence, apparently due to a hydraulic jump as washover currents entered the deep water of Mississippi Sound. Large-scale sediment redistribution on Dauphin Island proper was a consequence of the storm surge flood, However, the ebb surge was responsible for the reopening of 3 inlets across Little Dauphin Island.-from Author

    ,

    No full text
    • 

    corecore