709 research outputs found
Periaxonal K+ regulation in the small squid Alloteuthis. Studies on isolated and in situ axons
A novel giant axon preparation from the squid Alloteuthis is described. Properties of in situ and isolated axons are similar. Periaxonal K+ accumulation is a function of the physiological state of the animal and of the axon and its sheathing layers. Carefully dissected isolated axons, and axons in situ in a healthy mantle, show much less K+ accumulation than previously reported in squid. It is suggested that the Schwann cells are involved in the observed K+ regulation
Pinch Technique and the Batalin-Vilkovisky formalism
In this paper we take the first step towards a non-diagrammatic formulation
of the Pinch Technique. In particular we proceed into a systematic
identification of the parts of the one-loop and two-loop Feynman diagrams that
are exchanged during the pinching process in terms of unphysical ghost Green's
functions; the latter appear in the standard Slavnov-Taylor identity satisfied
by the tree-level and one-loop three-gluon vertex. This identification allows
for the consistent generalization of the intrinsic pinch technique to two
loops, through the collective treatment of entire sets of diagrams, instead of
the laborious algebraic manipulation of individual graphs, and sets up the
stage for the generalization of the method to all orders. We show that the task
of comparing the effective Green's functions obtained by the Pinch Technique
with those computed in the background field method Feynman gauge is
significantly facilitated when employing the powerful quantization framework of
Batalin and Vilkovisky. This formalism allows for the derivation of a set of
useful non-linear identities, which express the Background Field Method Green's
functions in terms of the conventional (quantum) ones and auxiliary Green's
functions involving the background source and the gluonic anti-field; these
latter Green's functions are subsequently related by means of a Schwinger-Dyson
type of equation to the ghost Green's functions appearing in the aforementioned
Slavnov-Taylor identity.Comment: 45 pages, uses axodraw; typos corrected, one figure changed, final
version to appear in Phys.Rev.
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
Particle decays and stability on the de Sitter universe
We study particle decay in de Sitter space-time as given by first order
perturbation theory in a Lagrangian interacting quantum field theory. We study
in detail the adiabatic limit of the perturbative amplitude and compute the
"phase space" coefficient exactly in the case of two equal particles produced
in the disintegration. We show that for fields with masses above a critical
mass there is no such thing as particle stability, so that decays
forbidden in flat space-time do occur here. The lifetime of such a particle
also turns out to be independent of its velocity when that lifetime is
comparable with de Sitter radius. Particles with mass lower than critical have
a completely different behavior: the masses of their decay products must obey
quantification rules, and their lifetime is zero.Comment: Latex, 38 pages, 1 PostScript figure; added references, minor
corrections and remark
Simulating Cosmic Microwave Background maps in multi-connected spaces
This article describes the computation of cosmic microwave background
anisotropies in a universe with multi-connected spatial sections and focuses on
the implementation of the topology in standard CMB computer codes. The key
ingredient is the computation of the eigenmodes of the Laplacian with boundary
conditions compatible with multi-connected space topology. The correlators of
the coefficients of the decomposition of the temperature fluctuation in
spherical harmonics are computed and examples are given for spatially flat
spaces and one family of spherical spaces, namely the lens spaces. Under the
hypothesis of Gaussian initial conditions, these correlators encode all the
topological information of the CMB and suffice to simulate CMB maps.Comment: 33 pages, 55 figures, submitted to PRD. Higher resolution figures
available on deman
Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state
For processes with gauge bosons in the final state we show how to
continuously connect with a single Born-improved amplitude the resonant region,
where resummation effects are important, with the asymptotic region far away
from the resonance, where the amplitude must reduce to its tree-level form.
While doing so all known field-theoretical constraints are respected, most
notably gauge-invariance, unitarity and the equivalence theorem. The
calculations presented are based on the process , mediated by a
possibly resonant Higgs boson; this process captures all the essential
features, and can serve as a prototype for a variety of similar calculations.
By virtue of massive cancellations the resulting closed expressions for the
differential and total cross-sections are particularly compact.Comment: 23 pages, Latex, 4 Figures, uses axodra
The Gauge-Independent QCD Effective Charge
It is shown how the QED concept of a gauge-, scale- and scheme-independent
one-loop effective charge can be extended directly at the diagrammatic level to
QCD, thus justifying explicitly the ``naive non-abelianization'' prescription
used in renormalon calculus. It is first argued that, for on-shell external
fields and at the strictly one-loop level, the required gluon self-energy-like
function is precisely that obtained from S-matrix elements via the pinch
technique. The generalization of the pinch technique to explicitly off-shell
processes is then introduced. It is shown how, as a result of a fundamental
cancellation among conventional perturbation theory diagrams, encoded in the
QCD Ward identities, the pinch technique one-loop gluon self-energy
i\hat{\Pi}_{\mu\nu}^{ab}(q) remains gauge-independent and universal regardless
of the fact that the ``external'' fields in the given process are off-shell.
This demonstration involves a simple technique enabling the isolation, in an
arbitrary gauge, of i\hat{\Pi}_{\mu\nu}^{ab}(q) from subclasses of up to
several hundred diagrams at once. Furthermore, it is shown how this one-loop
cancellation mechanism iterates for the subclasses of n-loop diagrams
containing implicitly the Dyson chains of n one-loop self-energies
i\hat{\Pi}_{\mu\nu}^{ab}(q). The gauge cancellation required for the Dyson
summation of i\hat{\Pi}_{\mu\nu}^{ab}(q) is thus demonstrated explicitly in a
general class of ghost-free gauges for all orders n.Comment: 48 pages, Latex, uses axodraw.sty (included). Revised to include
throughout the case of non-covariant gauges to
Gauge and Scheme Dependence of Mixing Matrix Renormalization
We revisit the issue of mixing matrix renormalization in theories that
include Dirac or Majorana fermions. We show how a gauge-variant on-shell
renormalized mixing matrix can be related to a manifestly gauge-independent one
within a generalized scheme of renormalization. This
scheme-dependent relation is a consequence of the fact that in any scheme of
renormalization, the gauge-dependent part of the mixing-matrix counterterm is
ultra-violet safe and has a pure dispersive form. Employing the unitarity
properties of the theory, we can successfully utilize the afore-mentioned
scheme-dependent relation to preserve basic global or local symmetries of the
bare Lagrangian through the entire process of renormalization. As an immediate
application of our study, we derive the gauge-independent renormalization-group
equations of mixing matrices in a minimal extension of the Standard Model with
isosinglet neutrinos.Comment: 31 pages, LaTeX, uses axodraw.st
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
- …