147 research outputs found

    Separation of a single photon and products of the π0,η,Ks0\pi^0,\eta, K^0_s meson neutral decay channels in the CMS electromagnetic calorimeter using neural network

    Full text link
    The artificial neural network approach is used for separation of signals from a single photon γ\gamma and products of the π0,η,Ks0\pi^0,\eta, K^0_s meson neutral decay channels on the basis of the data from the CMS electromagnetic calorimeter alone. Rejection values for the three types of mesons as a function of single photon selection efficiencies are obtained for two Barrel and one Endcap pseudorapidity regions and initial \Et of 20, 40, 60 and 100 GeV.Comment: 16 pages, uses cernrep.cls style fil

    Instantons and the infrared behavior of the fermion propagator in the Schwinger Model

    Full text link
    Fermion propagator of the Schwinger Model is revisited from the point of view of its infrared behavior. The values of anomalous dimensions are found in arbitrary covariant gauge and in all contributing instanton sectors. In the case of a gauge invariant, but path dependent propagator, the exponential dependence, instead of power law one, is established for the special case when the path is a straight line. The leading behavior is almost identical in any sector, differing only by the slowly varying, algebraic prefactors. The other kind of the gauge invariant function, which is the amplitude of the dressed Dirac fermions, may be reduced, by the appropriate choice of the dressing, to the gauge variant one, if Landau gauge is imposed.Comment: 9 pages, in REVTE

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    Measurement of the differential cross section for the production of an isolated photon with associated jet in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    The process ppbar -> photon + jet + X is studied using 1.0 fb^-1 of data collected by the D0 detector at the Fermilab Tevatron ppbar collider at a center-of-mass energy sqrt(s)=1.96 TeV. Photons are reconstructed in the central rapidity region |y_gamma|<1.0 with transverse momenta in the range 30<Pt_gamma<400 GeV while jets are reconstructed in either the central |y_jet|15 GeV. The differential cross section d^3sigma/dPt_gamma dy_gamma dy_jet is measured as a function of Pt_gamma in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.Comment: 13 pages, 10 figure

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions
    corecore