2,365 research outputs found

    Asteroids in the Inner Solar System I - Existence

    Full text link
    Ensembles of in-plane and inclined orbits in the vicinity of the Lagrange points of the terrestrial planets are integrated for up to 100 million years. The integrations incorporate the gravitational effects of Sun and the eight planets (Pluto is neglected). Mercury is the least likely planet, as it is unable to retain tadpole orbits over 100 million year timescales. Both Venus and the Earth are much more promising, as they possess rich families of stable tadpole and horseshoe orbits. Our survey of Trojans in the orbital plane of Venus is undertaken for 25 million years. Some 40% of the survivors are on tadpole orbits. For the Earth, the integrations are pursued for 50 million years. The stable zones in the orbital plane are larger for the Earth than for Venus, but fewer of the survivors are tadpoles. Both Venus and the Earth also have regions in which inclined test particles can endure near the Lagrange points. For Venus, only test particles close to the orbital plane are stable. For the Earth, there are two bands of stability, one at low inclinations (i < 16 degrees) and one at moderate inclinations (between 24 degrees and 34 degrees). The inclined test particles that evade close encounters are primarily moving on tadpole orbits. Our survey of in-plane test particles near the Martian Lagrange points shows no survivors after 60 million years. Low inclination test particles do not persist, as their inclinations are quickly increased until the effects of a secular resonance with Jupiter cause de-stabilisation. Numerical integrations of inclined test particles for timespans of 25 million years show stable zones for inclinations between 14 and 40 degrees.Comment: 20 pages, 21 figures, Monthly Notices (in press

    About the various contributions in Venus rotation rate and LOD

    Full text link
    % context heading (optional) {Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained in particular concerning its rotation.} % aims heading (mandatory) {In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus, and more particularly the angular rotation rate.} % methods heading (mandatory) {Applying models already used for the Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere and the core of the planet are evaluated.} % results heading (mandatory) {Although the largest irregularities of the rotation rate of the Earth at short time scales are caused by its atmosphere and elastic deformations, we show that the Venus ones are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of 2 minutes of time (mn). These variations of the rotation rate are larger than the one induced by atmospheric wind variations that can reach 25-50 seconds of time (s), depending on the simulation used. The variations due to the core effects which vary with its size between 3 and 20s are smaller. Compared to these effects, the influence of the elastic deformation cause by the zonal tidal potential is negligible.} % conclusions heading (optional), leave it empty if necessary {As the variations of the rotation of Venus reported here are of the order 3mn peak to peak, they should influence past, present and future observations providing further constraints on the planet internal structure and atmosphere.}Comment: 12 pages, 10 figures, Accepted in A&

    Acetylcholine Contributes to Head Direction Cell Stability During Path Integration and Landmark Navigation

    Get PDF
    Perceived directional heading is represented in the brain by head direction (HD) cells, which fire rapidly when the head is pointed in one direction and become virtually silent when the head is pointed in all other directions. The HD signal is dominantly controlled by the position of visual landmarks, but can be maintained by path integration when familiar landmarks are not available. The neural mechanism(s) that allow path integration to maintain the HD signal have not been investigated, but a possible component of this mechanism is acetylcholine, given that selective cholinergic lesions impair path integration-based navigation. To test this, we recorded HD cell activity from the anterodorsal thalamus while rats foraged for food within a cylinder, or navigated within a dual chamber apparatus, after systemic injection of saline or atropine sulfate. In the cylinder, a prominent cue card served as the sole landmark for a standard session, after which the cue was removed for a no-cue session. Saline or atropine sulfate was then injected, and a second no-cue session was conducted, followed by standard, 90° cue rotation, standard, and no-cue sessions. During the first no-cue session after injection, some cells in atropine-treated rats showed slightly more drift in preferred firing direction (PFD) than control cells, but otherwise appeared to be unaffected by atropine. With the cue rotated 90º, 10 of the 19 (53%) cells in atropine-treated rats and 12 of the 17 (71%) control cells shifted within ± 30° of 90º. In the dual chamber apparatus, rats walked from a familiar cylinder to a novel rectangle via an alleyway, and then returned to the familiar cylinder. Control HD cells (n = 7) showed a slight PFD shift as the rat entered the novel rectangle (mean absolute shift = 17.14 ± 3.80°, range = -30 to 12°), suggesting the HD signal was maintained relatively well between arenas by path integration; upon return, the PFD returned to that of the first session (mean absolute shift = 5.14 ± 1.56°, range = -12 to 6°). In contrast, 7 of the 9 HD cells in atropine-treated rats (78%) showed greater PFD shifts between the familiar cylinder and novel rectangle (mean absolute shift = 86.00 ± 12.17°, angular shift range = -102 to 114°) and between the first and last sessions in the familiar cylinder (mean absolute shift = 24.00 ± 10.16°, angular shift range = 0 to -72°); 2 of the 9 cells (22%) showed considerable PFD drift during the novel rectangle or return cylinder sessions. Thus, acetylcholine is not critical for normal HD cell activity within a familiar environment, but facilitates the stability of the HD signal during both path integration and landmark navigation

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?

    Full text link
    (abridged) In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the results obtained on the early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the spectra. Our dedicated radial-velocity measurement method was used to monitor the star's radial velocities over five years. We also use complementary, high angular resolution and high-contrast images taken with PUEO at CFHT. We show that Theta Cygni radial velocities are quasi-periodically variable, with a ~150-day period. These variations are not due to the ~0.35-Msun stellar companion that we detected in imaging at more than 46 AU from the star. The absence of correlation between the bisector velocity span variations and the radial velocity variations for this 7 km/s vsini star, as well as other criteria indicate that the observed radial velocity variations are not due to stellar spots. The observed amplitude of the bisector velocity span variations also seems to rule out stellar pulsations. However, we observe a peak in the bisector velocity span periodogram at the same period as the one found in the radial velocity periodogram, which indicates a probable link between these radial velocity variations and the low amplitude lineshape variations which are of stellar origin. Long-period variations are not expected from this type of star to our knowledge. If a stellar origin (hence of new type) was to be confirmed for these long-period radial velocity variations, this would have several consequences on the search for planets around main-sequence stars, both in terms of observational strategy and data analysis. An alternative explanation for these variable radial velocities is the presence of at least one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A

    Modeling the resonant planetary system GJ876

    Full text link
    The two planets about the star GJ 876 appear to have undergone extensive migration from their point of origin in the protoplanetary disk -- both because of their close proximity to the star (30 and 60 day orbital periods) and because of their occupying three stable orbital resonances at the 2:1 mean-motion commensurability. The resonances were most likely established by converging differential migration of the planets leading to capture into the resonances. A problem with this scenario is that continued migration of the system while it is trapped in the resonances leads to orbital eccentricities that rapidly exceed the observational upper limits of e_1 = 0.31 and e_2 = 0.05. As seen in forced 3-body simulations, lower eccentricities would persist during migration only for an applied eccentricity damping. Here we explore the evolution of the GJ 876 system using two-dimensional hydrodynamical simulations that include viscous heating and radiative effects. We find that a hydrodynamic evolution within the resonance, where only the outer planet interacts with the disk, always rapidly leads to large values of eccentricities that exceed those observed. Only if mass is removed from the disk on a time scale of the order of the migration time scale (before there has been extensive migration after capture), as might occur for photoevaporation in the late phases of planet formation, can we end up with eccentricities that are consistent with the observations.Comment: Paper accepted by A&A, 17 Pages, 17 Figure

    Mesoscale subduction at the Almeria-Oran front. Part 2: biophysical interactions.

    Get PDF
    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria–Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar, traced the subduction of Mediterranean Surface Water across the Almeria–Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star

    Get PDF
    We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060^{\rm + 0.0000022 }_ days a mildly metal-poor solar-type star of magnitude V = 11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass M_{\rm p} = 0.503^_ MJM_{\rm J} and radius R_{\rm p} = 1.224^_ RJR_{\rm J}, resulting in a density ρp=0.27±0.05\rho_{\rm p} = 0.27 \pm 0.05 ρJ\rho_{\rm J}. The mass and radius for the host star are M_\ast = 0.88^_ MM_\odot and R_\ast = 0.870^_ RR_\odot. The non-zero orbital eccentricity e = 0.054^{\rm +0.018}_ that we measure suggests that the planet underwent a massive tidal heating ~1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis \beta = 11^_ deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal interactions with a protoplanetary disk
    corecore