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Abstract 

 

The Almeria-Oran front forms where surface waters of Atlantic and Mediterranean 

origin meet at the eastern end of the Alboran Sea.  A multidisciplinary field 

experiment on RRS Discovery in December 1996, in the second observational phase 

of the EU funded OMEGA project, observed the biological impact of mesoscale 

frontal instability of the Almeria-Oran frontal jet. It is concluded that periodic vertical 

velocities of ~20 m/day, associated with the propagation of wave-like meanders along 

the front, have a significant effect on the vertical distribution of zooplankton across 

the front despite their ability to migrate at greater speeds. Observations of a layer of 

fluorescence coincident with subducted surface waters indicated that phytoplankton 

were drawn down and along isopycnals, by cross front ageostrophic motion, to depths 

of 200 m. From the study of sound scattering layers identified in acoustic backscatter 

data a layer of zooplankton was found coincident with the drawn down phytoplankton. 

This layer persisted during and despite diel vertical migration. High resolution optical 

plankton counter data showed smaller zooplankton, that did not undertake diel vertical 

migration, remained concentrated near the surface in the fast flowing frontal jet.  

 

Keywords: OCEANIC FRONTS, BIOACOUSTICS, MESOSCALE FEATURES, 

VERTICAL MOTION, BIOPHYSICAL INTERACTIONS, PLANKTON 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/9699098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

DISTRIBUTIONS, MEDITERRANEAN SEA, WESTERN MEDITERRANEAN, 

ALBORAN SEA, ALMERIA-ORAN FRONT, 2.5° W - 0.5° E, 35.0° N - 37.5° N. 

 

1. Introduction 

 

Fronts form at interfaces between different water masses of different 

hydrographic/dynamic properties (Sournia, 1994) and can often be characterised by a 

rapid change in the horizontal density gradient. Frontal zones harbour ecosystems 

where the patchiness of marine populations can be affected by the complex physical 

environment (Owen 1981; Haury, 1982). 

 

Enhancement of primary producers in the proximity of fronts has been reported by 

numerous authors (Bainbridge, 1957; Olson, 1986; Strass, 1992 and others). This 

increase in biomass is thought to result from various mechanisms including: vertical 

motion affecting the light field encountered by phytoplankton (Lillibridge, 1990); 

mixing of phytoplankton and nutrients along the frontal interface (Yoder et al., 1983; 

McClain et al., 1990; L’Heguen et al., 1993); death and subsequent remineralisation 

of foreign populations supporting higher endemic species growth, and along front 

advection of populations in the presence of an along front gradient in other 

environmental parameters (Olsen et al., 1994). In ageostrophic fronts, where cross-

frontal secondary circulation exists, this production can be exported downwards along 

sloping isopycnals (Dewey et al., 1991; Gorsky et al., 1991; Videau et al., 1994). 

 

This enhanced phytoplankton standing stock may be passed to higher trophic levels 

(Le Fevre, 1986). Zooplankton populations have been shown to be influenced by 

fronts in passive response to physical factors, or through behavioural changes (e.g. 

Boucher, 1984; Govini and Grimes, 1992; Ashjian, 1994; Thibault et al., 1994). 

Enhancement of zooplankton abundance at frontal boundaries has been attributed to: 

behaviourally mediated concentration in the presence of convergence zones (Okubo, 

1978; Olson and Backus, 1985; Franks 1992; 1997; Govoni and Grimes, 1992); close 

association with thermal gradients (Ortner et al., 1980; 1981; Magnuson et al., 1981); 

orientation to density discontinuities (Murav’yev and Shirshov, 1984) or abundance of 

food (Bowman and Esaias, 1978; Crowder and Magnuson, 1983). Interpreting 
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zooplankton distributions can be further complicated by zooplankton behaviour such 

as diel migration (e.g. Owen, 1981; Wishner and Allison, 1986). This paper describes 

phytoplankton and zooplankton distributions with respect to the hydrographic 

environment at the Almeria-Oran front in the Alboran Sea during December 1996. 

 

The upper ocean circulation of the Alboran Sea is generally well known (Gascard and 

Richez, 1985; Perkins et al., 1990; Sournia 1993; Prieur and Sournia, 1994; Folkard et 

al., 1994). The Atlantic inflow enters the Western Mediterranean through the Strait of 

Gibraltar. Two anticyclonic gyres form in the Alboran basin, fed by this Atlantic 

inflow (Figure 1) (Tintore et al., 1988; Allen et al., 2001-this issue). The eastern 

Alboran gyre has been known to break down on occasions (Cheney and Doblar, 1982; 

Perkins et al., 1987; Heburn and La Violette, 1990) and, as many as three gyres have 

been observed through satellite imagery (Viudez et al., 1998). During its eastward 

migration, inflowing Atlantic Water (AW) is modified by upwelled Levantine 

Intermediate Water (LIW) and a Temperature Minimum Layer (TML) forming 

Modified AW (MAW). Satellite imagery indicates that MAW follows a number of 

paths around the Alboran Sea until reaching Cape Gata, where it meets Mediterranean 

Surface Waters (MSW) flowing slowly west (Figure 1 in Allen et al., 2001-this issue). 

The convergence of these two water masses causes the MAW to be deflected 

southward towards Oran (Algeria) along the eastern edge of the Eastern Alboran Gyre, 

forming a well defined frontal zone (Tintore et al., 1988). Physical and biochemical 

data indicate that the front is limited to the upper 200 m, with a strong southeastward 

geostrophic baroclinic jet (Folkard et al., 1994). The secondary ageostrophic 

circulation associated with instability of the jet is characterised by surface 

convergence and periodic isopycnal sinking and upwelling (Tintore et al., 1988; Allen 

et al., 2001-this issue). 

 

Frontal enhancement of phytoplankton populations has been observed at the Almeria-

Oran front (Lohrenz et al., 1988; Prieur and Sournia, 1994; Videau et al., 1994; Fiala 

et al., 1994). Diatom and nanoplankton abundance, chlorophyll content and primary 

production have been observed to be higher in the jet, either from satellite data 

(Arnone and La Violette, 1986; Lohrenz et al., 1988; Arnone et al., 1990) or in-situ 

shipboard data (Prieur et al., 1993; Videau et al., 1994; Fiala et al., 1994). This 
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suggests that the frontal-jet system exhibits a fertilising effect on the otherwise 

oligotrophic waters of the Alboran Sea. Such a frontal enhancement is thought to 

result from the vertical input of nutrients caused by upwelling (Videau et al., 1994; 

Fiala et al., 1994; Claustre et al., 1994) and this idea is supported by L’Helguen et al. 

(1992) and Videau et al. (1994) who observed a shallower nitracline in frontal waters 

than in Mediterranean waters (18-30 m and 30-60 m respectively). Numerical 

simulations undertaken by Zakardjian and Prieur (1994) support this hypothesis of 

production enhancement through vertical advection of nutrients. Videau et al. (1994) 

observed some of this enhanced production exported down below the thermocline to 

depths of 110 m, along the 28.0 σ0 isopycnal. 

 

Fewer studies have been made of the distribution of zooplankton at the Almeria-Oran 

front. Coincident with the observations of high phytoplankton biomass at the front 

during the project ALMOFRONT, Thibault et al. (1994) and Seguin et al. (1994) 

observed higher total standing stocks of zooplankton, including higher copepod 

abundances, in the frontal jet compared with surrounding waters. Baussant et al. 

(1993) investigated the distribution of micronekton and macrozooplankton using a 38 

kHz echosounder, multi-net sampling and video profiling across the Almeria-Oran 

front. And showed that the region was dominated by several deep scattering layers, 

which could be attributed to Cyclothone fish or euphausiids.  

 

As part of the EU MAST III funded project OMEGA (Observations and Modelling of 

Eddy scale Geostrophic and Ageostrophic motions), a multidisciplinary study was 

made of the Almeria-Oran front in December 1996 and January 1997. Concurrent 

physical, chemical and biological data were obtained on the same time and space 

scales. By using high-resolution modern biological sampling techniques with 

instruments such as a multifrequency echosounder, a Vessel-Mounted Acoustic 

Doppler Current Profiler (VM-ADCP) and an Optical Plankton Counter (OPC), 

detailed maps of the distribution of zooplankton were obtained. This paper compares 

the biological distributions (principally fluorescence, acoustic backscatter and OPC 

measured abundance and biovolume) with a knowledge of the physical environment 

(Allen et al., 2001-this issue) and thus examines some of the biophysical interactions 

which occur at the Almeria-Oran front. In the next section we discuss the methods we 
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have used to collect biological information. In section 3 we present the results; in 

section 4, we present a discussion of our findings and make comparisons with 

previous work and, in section 5, draw our conclusions. 

 

2. Materials and Methods 

 

Hydrographic, bioacoustic and biological data were collected aboard RRS Discovery 

Cruise 224, the first part of which comprised the second field experiment of OMEGA 

between 22 November and 29 December 1996 (Allen et al., 1997a). During the 

second half of RRS Discovery Cruise 224, 31 December 1996 to 17 January 1997, 

traditional deep nets were deployed in the region of the Almeria-Oran front (Pugh et 

al., 1997). 

 

Using the towed undulating vehicle SeaSoar (Pollard, 1986), two large scale and five 

repeat fine scale surveys were made of the Almeria-Oran front region in the western 

Mediterranean. In this paper we will concentrate on the data obtained during the three 

rapidly repeated fine scale surveys 1-3 (FSS1-3) (Figure 2). In addition to the usual 

CTD, used to determine hydrographic parameters, a fluorimeter, an irradiance (PAR) 

sensor and an Optical Plankton Counter (OPC) were used to determine fluorescence 

yield, light (Allen et al., 1997b) and particle abundance in the size range 0.3 mm – 5.5 

mm (Rabe et al., 1998). Bioacoustic measurements were obtained using a hull 

mounted RDI 150 kHz VM-ADCP and a SIMRAD EK500 multifrequency 

echosounder (Crisp et al., 1998; Crisp, 1999). 

 

The repeated fine scale surveys had 10-11 parallel tracks, ~10 km apart, targeted at the 

Almeria-Oran front by near real-time analysis of underway thermosalinograph (TSG) 

data and AVHRR SST satellite imagery (Allen et al., 1997a). Between surveys, CTD 

stations and biological sampling with targeted Longhurst Hardy Plankton Recorder 

(LHPR) tows were carried out to determine nutrient profiles and verify biological 

distributions indicated by the OPC and acoustic data. The timetable and duration of 

FSS 1-3, and five CTD stations that we refer to later, were as follows: 

 

18:30 GMT 11/12/96 – 10:00 GMT 15/12/96 Fine Scale Survey 1 (FSS1) 



 6 

18:40 GMT 15/12/96 – 04:05 GMT 16/12/96 CTD stations 37-41 

21:10 GMT 16/12/96 – 17:30 GMT 20/12/96 Fine Scale Survey 2 (FSS2) 

19:50 GMT 21/12/96 – 22:15 GMT 24/12/96 Fine Scale Survey 3 (FSS3) 

 

CTD stations 37-41 (RRS Discovery station numbers 13037-13041), were carried out 

in a line across the centre of the Almeria-Oran front at the following positions: 

 

station 37 36° 10.1’ N, 01° 51.4’ W 

station 38 36° 14.0’ N, 01° 45.7’ W 

station 39 36° 17.5’ N, 01° 40.1’ W 

station 40 36° 21.7’ N, 01° 34.5’ W 

station 41 36° 25.4’ N, 01° 28.8’ W. 

 

2.1. Hydrographic measurements. 

 

Configured as described above, SeaSoar had a typical depth range of 0 - 370 m at a 

towing speed of 8 knots (4 m/s), using a fully faired conducting cable. A full 

description of the hydrographic data is given in Allen et al. (2001-this issue): we shall 

draw on conclusions from this accompanying paper later in the discussion (section 4). 

The fluorimeter (Chelsea Instruments SubAquatracker) provided an indicator of 

phytoplankton biomass, and the data are presented in this paper in instrument volts. 

 

2.2 OPC measurements. 

 

A Focal Technologies Optical Plankton Counter (OPC) was mounted on a frame 

under the SeaSoar vehicle body. It was fitted with an acrylic insert to reduce the 

tunnel cross section to 0.001 m
2
 for towed use (Pollard et al., 2000). The OPC 

estimates the Equivalent Spherical Diameter (ESD) of particles which break a 640 nm 

wavelength LED light beam. The instrument is designed to resolve ESD’s between 

250 µm and 3 mm (Herman, 1992), which represent approximate lengths of 500 µm 

to 30 mm (Huntley et al., 1995). Processing of the OPC data files followed the route 

developed by Pollard et al. (1996). Abundance and volume data were unrealistically 

low below 0.3 mm ESD and animals above 5.55 mm were too sparsely distributed to 
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be sampled effectively in the volume filtered. Thus measurements were separated into 

four size classes, 0.3 - 0.65 mm, 0.65 - 1.35 mm, 1.35 - 2.75 mm and 2.75 - 5.55 mm 

(ESD). Abundances and volumes for the first three size classes were averaged into 4 

km along track by 8 m depth bins, consistent with the SeaSoar CTD data processing. 

Data for the largest size class were averaged into 12 km along track by 32 m bin 

depths to allow for the lower population density observed for larger zooplankton 

(Rabe et al., 1998). 

 

2.3 Acoustic measurements. 

 

Acoustic backscatter data were recorded from a Vessel Mounted RD Instruments 150 

kHz Acoustic Doppler Current Profiler (VM-ADCP) and a SIMRAD EK500 

multifrequency (38, 120 and 200 kHz) echosounder. 

 

2.3.1 VM-ADCP. 

 

A number of authors have shown that acoustic backscatter data from a VM-ADCP 

may provide both quantitative and qualitative information about zooplankton 

distributions (Flagg and Smith, 1989; Plueddemann and Pinkel, 1989; Roe et al., 

1996; Griffiths and Diaz, 1996). For the duration of the SeaSoar surveys, we have 

calibrated acoustic backscatter strength as Mean Volume BackScatter (MVBS), 

corrected for the variation of the sound absorption coefficient with changing salinity 

and temperature (from in situ SeaSoar CTD data) following the method used by Roe 

et al. (1996). It was not possible to tow the LHPR at the same time as SeaSoar, 

therefore in-situ salinity and temperature from the environmental sensors on the 

LHPR were used to calibrate concurrent VM-ADCP MVBS data. 

 

2.3.2 SIMRAD EK500. 

 

The SIMRAD EK500 is a scientific multifrequency echosounder, operating at three 

frequencies, 38, 120 and 200 kHz. It has an extremely wide (150 dB) dynamic range 

which enables it to measure target strength reliably down to -120 dB and thus, as well 

as measuring individual targets, it is ideal for measuring Mean Volume BackScatter 
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(MVBS). The EK500 was housed in a towed fish deployed from its own portable 

winch over the port side of the after deck of RRS Discovery. MVBS data are 

presented here following the manufacturer’s calibrations (Crisp et al. 1998). 

 

2.4 LHPR measurements. 

 

Between SeaSoar surveys the LHPR (Longhurst et al., 1966; Williams et al., 1983) 

was towed in a V-shaped profile across the Almeria-Oran front, typically through the 

upper 400 m of the water column. The samples were preserved onboard with 4% 

formaldehyde for the subsequent identification and counting of organisms on return to 

the Southampton Oceanography Centre (SOC). 

 

3. Results 

 

3.1 Physics 

 

The Almeria-Oran front forms at the eastern boundary of the eastern of two Alboran 

Sea gyres (Figure 1). On the western side of the front, a high temperature, low salinity 

signature of Modified Atlantic Waters (MAW), present in the Eastern Alboran Gyre, 

was observed down to depths of ~200 m (Figure 3). The mixed layer depth decreases 

from west to east across the front. The frontal jet carries both MAW and higher 

salinity, but lower temperature (< 15.5 °C and 36.7-37.5 psu), Atlantic-Mediterranean 

Interface Waters (A-MIW, Gascard and Richez, 1985) eastwards into the W. 

Mediterranean forming the head of the Algerian current. Below the surface waters, a 

Temperature Minimum Layer (TML), of water with salinity of ~ 38.2 psu and 

temperature below 13.5 °C, was present to depths of 250-300 m. At maximum 

SeaSoar depths of ~370 m a signature of Levantine Intermediate Water (LIW) was 

observed. The water masses are discussed in detail in Allen et al. (2001-this issue), 

who follow Gascard and Richez (1985). 

 

During RRS Discovery cruise 224, Mediterranean Surface Waters (MSW), 

characterised by high temperature and high salinity (> 37.5 psu), were observed to 

flow westwards along the south-east coast of Spain towards the Almeria-Oran front 
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region (Figure 8, Allen et al., 2001-this issue). Between FSS2 and FSS3 a detailed 

analysis of the hydrography revealed the subduction and cross front transport of MSW 

on the 27.9 σ0 density surface, following the entrainment and advection of MSW into 

the frontal jet. Using MSW as a tracer, the observations suggested a vertical velocity 

component to the frontal flow of ~25 m/day. Detailed analysis (Allen et al., 2001-this 

issue) further indicated that this vertical motion resulted from baroclinic instability of 

the Almeria-Oran front and the periodic propagation of regions of upward and 

downward motion along the front. 

 

3.2. Phytoplankton and nutrients. 

 

Fluorescence data indicated that phytoplankton were present throughout the mixed 

layer, with no distinct sub-surface maximum (Figure 4). It is interesting to note that 

the euphotic zone, as defined by the 1 W/m
2
 isolume, only extends to ~50 m and 

therefore phytoplankton populations on the Alboran Gyre side of the front, where the 

mixed layer depth significantly exceeds the euphotic depth, may spend a significant 

time at low light levels. Vertical profiles of fluorescence yield from 5 CTD stations, 

carried out across the front between FSS1 and FSS2 (section 2), showed that 

phytoplankton were typically uniformly distributed above the nitracline, which was at 

a similar depth to the thermocline (Figure 5). The nitracline shelved from 70-100 m 

on the Alboran Gyre side of the front to 30-50 m on the Mediterranean side, following 

the change in mixed layer depth. Surface values of nitrate were typically ~1 µmol/l: 

below the nitracline, at 300 m depth, the nitrate concentration increased to ~8 µmol/l 

(Figure 5). 

 

The pattern of phytoplankton distribution following the mixed layer, and thus shoaling 

from west to east across the front, was consistent throughout the three fine scale 

surveys. During FSS3, however, distinct tongues of fluorescence were observed lying 

between the 27.4 and 28.4 σ0 isopycnals at the bottom of the thermocline, under the 

surface waters of the Alboran gyre and extending to depths of ~200 m (Figure 4).  

 

3.3. Zooplankton 
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MVBS was obtained from acoustic backscatter data to describe the distribution of 

zooplankton, larger than a few millimetres in length, in the Almeria-Oran frontal 

region. We have identifed three Sound Scattering Layers (SSL1, SSL2 and SSL3) in 

both ADCP and EK500 echosounder MVBS data. 

 

SSL1 was a permanent feature occurring in 38 kHz EK500 data throughout the survey 

area between ~250 and >600 m. The maximum intensity of this layer typically 

occurred between 300 and 500 m and varied between -60 to >-56 dB, compared with 

background values of ~-95 dB (Figure 6). This layer was also present in data from the 

ADCP, near the limit of the instrument’s depth range (Figure 6). There were no 

obvious variations in the depth of SSL1 either side of the front, although its intensity 

decreased at night. 

 

SSL2 was present in both ADCP and EK500 data, at all frequencies. It does not refer 

specifically to a discrete layer but is used here to describe a diurnal signal. High 

backscatter was present at depth (typically >300 m) during the day, moving to the 

surface at night (Figure 6). At all frequencies night-time data were distinguished by 

the presence of high backscatter in surface waters, typically 20 – 30 dB higher than 

day-time values. The night-time patterns in EK500 MVBS data at 120 and 200 kHz 

were characterised by high backscatter throughout the surface with no discrete 

layering. However, ADCP and 38 kHz EK500 MVBS data were more structured, with 

a discrete layer of high MVBS occurring between the 27.4 and 28.4 σt isopycnal, 

referred to here as SSL3. 

 

SSL3, was a recurring feature in both day and night MVBS data, but found only 

during FSS3. It was detected principally in ADCP and 38 kHz EK500 data sets 

because its depth was often below the acoustic penetration depth of the EK500 at the 

120 and 200 kHz frequencies. SSL3 was concurrent with the tongue of high 

fluorescence (Figure 4) with a MVBS typically 9 dB greater than surrounding water, 

indicating an 8-fold increase in acoustic backscatter (a change of 3 dB is equal to a 

doubling of signal). This layer was present day and night and persisted despite and 

during the periods of diel migration (Figure 6). 
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Zooplankton biovolume, determined from LHPR samples, increased at the depth of 

SSL3 (Figure 7). Identification of zooplankton groups indicated an increase in the 

abundance of euphausiids and chaetognaths at the same depth as SSL3. Below 300 m, 

and coincident with SSL1 (Figure 7), fish dominated the biovolume in the net 

samples. 

 

In addition to the identified sound scattering layers there was a patch of high MVBS 

which occurred consistently at the surface, in MAW, within the frontal jet. This patch 

of high backscatter was visible in both 120 and 200 kHz EK500 data (Figure 8) with 

a MVBS 12 dB greater than the surrounding waters. Coincident with the high MVBS 

within the frontal jet a high abundance of generally smaller particles was also 

observed in OPC data. A high particle volume (~4000 mm
3
/m

3
) compared with 

surrounding waters (~125 mm
3
/m

3
), within the total size range measured by the OPC 

(0.3 – 5.55 mm ESD), was concentrated above 50 m depth on the edge of the Alboran 

gyre. This increase in particle volume was most noticeable in the size range 0.65 – 

1.35 mm and 1.35 – 2.75 mm ESD (Figure 8). This was the only distinct recurring 

pattern found in the OPC data; which did not contain a clear diel migratory signal or a 

noticeable increase in particle volume between the 27.4 and 28.4 σt isopycnal surfaces 

during FSS3. 

 

4. Discussion. 

 

The Almeria-Oran front forms where waters of Atlantic origin meet Mediterranean 

surface waters in the Alboran Sea, and its shape and position are variable on a time 

scale of days. In this study the front was found in its usual position as the eastern 

boundary of the eastern of two Alboran gyres (Tintore et al., 1988; Folkard et al., 

1994; Prieur and Sournia, 1994; Allen et al., 2001-this issue). The analysis of 

temperature and salinity on density surfaces showed Mediterranean Surface Water 

(MSW) advecting westward along the Spanish Coast until it reached the Almeria-

Oran front. At this point, MSW became entrained into the frontal jet and advected 

with Modified Atlantic Waters (MAW) along the front. The surveys showed that 

instability of the front caused subduction of water down and across the front at an 
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observed subduction rate of ~25m/day (Allen et al., 2001-this issue). This subduction 

influenced the distribution of both phytoplankton and zooplankton at the front. 

 

Fluorescence signals indicate that phytoplankton were present throughout the mixed 

layer in the survey area with no distinct subsurface chlorophyll maximum. This 

contrasts with previous work including the ALMOFRONT study where a distinct 

chlorophyll maximum was identified at the depth of the nitracline (DePalma et al., 

1987; Videau et al., 1994). In the present study the nitracline coincided with the 

thermocline at the bottom of the mixed layer, but the surface layer values of ~ 1 µm 

do not indicate severe nitrogen depletion. The nitrate concentrations reported in this 

study agreed with previously reported values (Bianchi et al., 1994). In both the 

OMEGA and ALMOFRONT studies the nitracline shelved across the Almeria-Oran 

front from Atlantic waters to Mediterranean waters, although its depth was shallower 

during the ALMOFRONT study (18-30 m at the front, Videau et al., 1994 compared 

with 30-50 m, this study). We believe that the deeper nitracline and more depth-

independent fluorescence signal in the surface layers may be seasonally dependent due 

to entrainment of deeper waters through enhanced winter overturning. 

 

In a significant number of the FSS3 legs, distinct signatures of phytoplankton 

subduction were seen in the contoured sections of fluorescence. High fluorescence 

was observed in layers coincident with the density surfaces ~27.4 - 28.4 extending to 

depths of up to 200 m, below the nitracline, euphotic zone and overlying Modified 

Atlantic Waters (MAW). This deep fluorescence maxima occurred coincidentally with 

the period of subduction of Mediterranean Surface Waters (MSW) discussed in Allen 

et al. (2001-this issue). The presence of phytoplankton at these depths occurring as a 

result of advection in between FSS2 and FSS3 is improbable, as ADCP showed no 

coherent residual signature of the strong along front flow below 150 m (Allen et al., 

2001-this issue). Phytoplankton are rapidly advected along the front by the frontal jet 

(speeds up to 1 m/s). Ageostrophic cross-front and vertical motion associated with 

periodic mesoscale instability of the front (Allen et al., 2001-this issue) result in a 

downward and cross-front secondary transport of phytoplankton. Lohrenz et al., 

(1988) previously observed chlorophyll maxima occurring along isopycnals on the 

Mediterranean side of the front, however this was attributed to the accumulation of 



 13 

cells in a particular zone of density stratification (Hobson and Lorenzen, 1972). The 

present observations of layers of fluorescence coincident with the subducted MSW 

suggest that at least some phytoplankton were drawn down and along the isopycnals. 

Boucher et al. (1987), Dewey et al. (1991) and Hood et al. (1991) made similar 

observations of downward and oblique transport of phytoplankton along isopycnals. 

The subduction of phytoplankton at the Almeria-Oran front has been commented on 

previously, resulting in a virtual south-north transect of chlorophyll biomass (Figure 8 

in Videau et al., 1994) analogous to our in-situ fluorescence transects (Figure 4). 

Using estimates of vertical displacement rates Videau et al. (1994) calculated 

isopycnal descent rates to be 35 m/day, not dissimilar to the subduction rate of 25 

m/day calculated and observed during this study (Allen et al., 2001-this issue). 

 

A permanent scattering layer below 300 m depth (SSL1) was observed in acoustic 

backscatter data from the ADCP and 38 kHz EK500 echosounder, within the TML 

and LIW. These observations were consistent with those of Baussant et al. (1993), 

who associated deep scattering layers at the Almeria-Oran front with non-migratory 

Cyclothone fish. Our LHPR net samples showed the presence of fish below 300 m and 

RMT catches, taken during leg 2 of RRS Discovery cruise 224 (Pugh et al., 1997), 

contained numerous Cyclothone below 300 m (Howell, pers comm.). In this study the 

depth of SSL1 did not vary either side of the front, contrary to that reported by 

Baussant et al. (1993). This suggests that the non-migrating Cyclothone remained 

within the TML and LIW and that their distribution was not influenced by surface 

waters. 

 

In addition to the permanent deep scattering layer (SSL1) a layer of high acoustic 

backscatter, shown in both ADCP and EK500 data, moving from the surface to depth 

(>300 m) at dawn and returning to the surface at dusk (SSL2) was clearly observed. 

This layer is a typical result of diel migration, as reported by numerous authors (Flagg 

and Smith, 1989; Nash et al., 1989; Roe et al., 1996; Herring et al., 1998; etc). RMT 

samples showed that myctophid fish and decapod crustacea were undertaking vertical 

migration at the front (Howell, pers comm.). These animals represent dominant 

acoustic scattering groups, especially myctophid fish which have resonant gas 

bladders thereby augmenting their acoustic scattering (Johnson, 1977). Using a 500 
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µm mesh net, Thibault et al. (1994) reported the vertical migration of zooplankton 

over a depth range of 300-400 m, in agreement with the present observations. 

 

A third layer of high acoustic backscatter (SSL3) was found coincident with the layer 

of subducted phytoplankton. LHPR samples identified an increase in abundance of 

euphausiids and chaetognaths at the depth of SSL3. These observations are supported 

by Baussant et al. (1993) who commented on similar scattering layers, and proposed 

that they were made up of euphausiid larvae present between 100 and 200 m depth in 

the frontal zone. SSL3 persisted despite and during the occurrence of diel migration. 

Owen (1981) and Wishner and Allison (1986) observed zooplankton concentrating in 

convergence zones as a result of the interruption of their diel migration.  Frontal 

enhancement of zooplankton biomass may be caused by physical processes (such as 

the drawing down of surface species by subduction) and/or behaviour (active 

accumulation of animals at a more abundant food source, see section 1). The rate of 

subduction (25 m/day; Allen et al. 2001 -this issue) is significantly less than the rate 

of vertical migration of some zooplankton (Heywood, 1996). In addition the 

coincident abundance of phytoplankton tends to suggest the increase in zooplankton is 

a result of behaviourally mediated concentration in the presence of convergence zones 

and increased food abundance (as seen by Okubo, 1978; Gorsky et al., 1991 and 

modelled by Franks, 1992; 1997). 

 

In addition to the three identified scattering layers, a patch of high MVBS, seen in 

both 120 and 200 kHz EK500 backscatter, was constantly present at the surface on the 

Atlantic side of the Almeria-Oran front, coincident with the strong frontal jet (1 m/s). 

OPC data also indicated the presence of a high abundance of particles sized between 

0.65 - 1.35 and 1.35 - 2.75 mm ESD. Thibault et al. (1994) and Seguin et al.(1994) 

both found an increase in the standing stock of zooplankton in the Almeria-Oran 

frontal jet. That increase was dominated by copepods with approximate lengths of 1 

mm. These copepods would be ideally sampled by the OPC in the size range 0.65 – 

1.35 mm ESD (Herman, 1992; following particle length approximately 1.5 times ESD 

according to Beaulieu et al., 1999) and it is likely that the OPC data reflect their 

increased abundance in the frontal jet. The lack of diel migratory signal in both the 

acoustic and OPC data for this patch also agreed with previous observations. Seguin et 
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al. (1994) and Thibault et al. (1994) compared day and night net samples, taken with a 

200 µm mesh, and found that there was no significant difference in abundance 

between them, implying that zooplankton in the 1-2 mm size range were not 

undertaking vertical migration in the Alboran Sea. 

 

5. Conclusion. 

 

Taken as a whole, these observations support the hypothesis presented by Gorsky et 

al. (1991), that enhanced superficial production can influence the mesopelagic 

ecosystem. It is likely that the observations in this study indicate that the horizontal 

and vertical distribution of larger zooplankton (e.g. > 5 mm in length) at the Almeria-

Oran front are controlled by a combination of physical processes, with downward 

vertical motion providing a vertically displaced food source, and animal behaviour, 

with diel migration disturbed by food availability. The effects of mesoscale physical 

processes on zooplankton distribution/patchiness have similar temporal and spatial 

scales as some zooplankton behaviour (Haury, 1982), and as such can be difficult to 

differentiate in observations. Modern survey tools (SeaSoar, OPC, acoustics etc.) 

which determine physical and biological variables concurrently, and at the same high 

resolution time and space scales, permit an understanding of biological distributions 

about which previous investigators have had to speculate intuitively (Videau et al., 

1994; Baussant et al., 1993). To identify ecosystem dynamics in the real ocean 

requires that relevant and complementary data are taken concurrently: the results of 

this study show convincingly that biological distributions in the vicinity of a front 

result from a combination of physical, chemical and biological factors. 
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Figures: 

 

Figure 1: a) The topography of the Alboran Sea (depths in metres):  reproduced 

from the GEBCO digital atlas, BODC.  b) NOAA-14 AVHRR image for the 13th 

October 1996 provided by the NERC through the Southampton Oceanography Centre 

and processed at the University of Pisa, Italy. 

 

Figure 2. Cruise tracks for Fine Scale Surveys 1-3 (FSS1-3). 

 

Figure 3: Contoured sections of temperature and salinity across the Almeria-

Oran front.  Leg e of FSS2 is shown here. 

 

Figure 4: Contoured sections of fluorescence yield (instrument volts) across the 

Almeria-Oran front for Leg f of FSS2 (top) and FSS3 (middle), and light for FSS3 

(bottom).  Isopycnals 27.4 and 28.4 sigma-0 are overlayed for FSS3. 

 

Figure 5: The vertical distribution of temperature (top), salinty (middle top), 

nitrate concentration (middle bottom) and fluorescence yield (bottom) from CTD 

stations across the Almeria-Oran front (from west to east). 

 

Figure 6: Contoured sections of fluorescence yield (instrument volts - top), VM-

ADCP acoustic backscatter amplitude (middle) and EK500 38 KHz acoustic 

backscatter amplitude (bottom), across the Almeria-Oran front for Leg g of FSS3.  

The 27.4 and 28.4 sigma-0 isopycnals are over-layed for reference. 

 

Figure 7: The vertical distribution of zooplankton biovolume (from LHPR 

samples) and a contoured section of concurrent ADCP MVBS data. 

 

Figure 8: Contoured sections of EK500 200 KHz MVBS (top),  EK500 120 KHz 

MVBS (middle top), particle volume ratio size class 0.65-1.35 mm ESD (middle 

bottom), particle volume ratio size class 1.35-2.75 mm ESD (bottom)across the 

Almeria-Oran front for Leg f of FSS3.  The 27.4 and 28.4 sigma-0 isopycnals are 

over-layed for reference. 




