415 research outputs found

    Improving early warning of drought in Australia

    Get PDF
    This invited review outlines a selection of recent technical and communication advances, in certain areas of climate and weather science that could improve the capability and utility of drought early warning systems in Australia. First, a selection of current operational outputs and their significance for drought early warning is reviewed, then a selection of advancements in the Research and Development (R&D) pipeline are considered, which have potential to help enable better decision-making by stakeholders subject to drought risk. The next generation of drought early warning systems should have a focus on index-and impact-based prediction models that go beyond basic weather and climate parameters, at seasonal through to multi-year timescales. Convergence and integration of emerging research, science and technology is called for across the fields of cli-mate, agronomy, environment, economics and social science, to improve early warning information. The enablement of more predictively based drought policy, should facilitate more proactive re-sponses by stakeholders throughout the agricultural value chain, and should make stakeholders more drought resilient

    Antimatter spectra from a time-dependent modeling of supernova remnants

    Full text link
    We calculate the energy spectra of cosmic rays (CR) and their secondaries produced in a supernova remnant (SNR), taking into account the time-dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusioncoefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: The positron/electron ratio and the antiproton/proton ratio are a few percent and few ×10−5\times 10^{-5}, respectively. Both ratios do not rise with energy.Comment: 4 pages, 4 eps figures; v2: results for time-dependent magnetic field adde

    Co-Occurrence Patterns of Common and Rare Leaf-Litter Frogs, Epiphytic Ferns and Dung Beetles across a Gradient of Human Disturbance

    Get PDF
    Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed

    Formation Process of the Circumstellar Disk: Long-term Simulations in the Main Accretion Phase of Star Formation

    Full text link
    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing clouds, the first (adiabatic) core with a size of ~10AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure, and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually, and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk. This indicates that the circumstellar disk is formed before the protostar formation with a size of ~10AU, which means that no protoplanetary disk smaller than <10AU exists. Reflecting the thermodynamics of the collapsing gas, at the protostar formation epoch, the circumstellar disk has a mass of ~0.01-0.1 solar mass, while the protostar has a mass of ~10^-3 solar mass. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. Even in the main accretion phase that lasts for ~10^5yr, the circumstellar disk mass dominates the protostellar mass. Such a massive disk is unstable to gravitational instability, and tends to show fragmentation. Our calculations indicate that the planet or brown-dwarf mass object may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows strong time variability that is caused by the perturbation of proto-planets and/or the spiral arms in the circumstellar disk. Such variability provides a useful signature for detecting the planet-sized companion in the circumstellar disk around very young protostars.Comment: 32 pages, 11 figures, Submitted to ApJ. For high resolution figures see http://www2-tap.scphys.kyoto-u.ac.jp/~machidam/astro-ph/CircumstellarDisk.pd

    Secondary Cosmic Ray Nuclei from Supernova Remnants and Constraints to the Propagation Parameters

    Full text link
    The secondary-to-primary B/C ratio is widely used to study the cosmic ray (CR) propagation processes in the Galaxy. It is usually assumed that secondary nuclei such as Li-Be-B are entirely generated by collisions of heavier CR nuclei with the interstellar medium (ISM). We study the CR propagation under a scenario where secondary nuclei can also be produced or accelerated from galactic sources. We consider the processes of hadronic interactions inside supernova remnants (SNRs) and re-acceleration of background CRs in strong shocks. Thus, we investigate their impact in the propagation parameter determination within present and future data. The spectra of Li-Be-B nuclei emitted from SNRs are harder than those due to CR collisions with the ISM. The secondary-to-primary ratios flatten significantly at ~TeV/n energies, both from spallation and re-acceleration in the sources. The two mechanisms are complementary to each other and depend on the properties of the local ISM around the expanding remnants. The secondary production in SNRs is significant for dense background media, n ~1 cm^-3, while the amount of re-accelerated CRs is relevant for SNRs expanding into rarefied media, n ~0.1 cm-3. Due to these effects, the the diffusion parameter 'delta' may be misunderstood by a factor of ~5-15%. Our estimations indicate that an experiment of the AMS-02 caliber can constrain the key propagation parameters while breaking the source-transport degeneracy, for a wide class of B/C-consistent models. Given the precision of the data expected from on-going experiments, the SNR production/acceleration of secondary nuclei should be considered, if any, to prevent a possible mis-determination of the CR transport parameters.Comment: 13 pages, 9 figures; matches the published versio

    The Outer Shock of the Oxygen-Rich Supernova Remnant G292.0+1.8: Evidence for the Interaction with the Stellar Winds from its Massive Progenitor

    Full text link
    We study the outer-shock structure of the oxygen-rich supernova remnant G292.0+1.8, using a deep observation with the Chandra X-ray Observatory. We measure radial variations of the electron temperature and emission measure that we identify as the outer shock propagating into a medium with a radially decreasing density profile. The inferred ambient density structure is consistent with models for the circumstellar wind of a massive progenitor star rather than for a uniform interstellar medium. The estimated wind density n_H = 0.1 ~ 0.3 cm^-3) at the current outer radius (~7.7 pc) of the remnant is consistent with a slow wind from a red supergiant (RSG) star. The total mass of the wind is estimated to be ~ 15 - 40 solar mass (depending on the estimated density range), assuming that the wind extended down to near the surface of the progenitor. The overall kinematics of G292.0+1.8 are consistent with the remnant expanding through the RSG wind.Comment: 9 pages (2-column), 5 figures, accepted for Ap

    Probing the formation of intermediate- to high-mass stars in protoclusters II. Comparison between millimeter interferometric observations of NGC 2264-C and SPH simulations of a collapsing clump

    Get PDF
    The earliest phases of massive star formation in clusters are still poorly understood. Here, we test the hypothesis for high-mass star formation proposed in our earlier paper (Peretto et al. 2006). In order to confirm the physical validity of this hypothesis, we carried out IRAM Plateau de Bure interferometer observations of NGC 2264-C and performed SPH numerical simulations of the collapse of a Jeans-unstable, prolate dense clump. Our Plateau de Bure observations reveal the presence of a new compact source (C-MM13) located only \~ 10000 AU away, but separated by ~ 1.1 km/s in (projected) velocity, from the most massive Class 0 object (C-MM3) lying at the very center of NGC 2264-C. Detailed comparison with our numerical SPH simulations supports the view that NGC 2264-C is an elongated cluster-forming clump in the process of collapsing and fragmenting along its long axis, leading to a strong dynamical interaction and possible protostar merger in the central region of the clump. The present study also sets several quantitative constraints on the initial conditions of large-scale collapse in NGC 2264-C. Our hydrodynamic simulations indicate that the observed velocity pattern characterizes an early phase of protocluster collapse which survives for an only short period of time (i.e., < 10^5 yr). To provide a good match to the observations the simulations require an initial ratio of turbulent to gravitational energy of only ~ 5 %, which strongly suggests that the NGC 2264-C clump is structured primarily by gravity rather than turbulence. The required "cold'' initial conditions may result from rapid compression by an external trigger.Comment: 15 pages, 8 figures, accepted for publication in A&

    Recurrent Planet Formation and Intermittent Protostellar Outflows Induced by Episodic Mass Accretion

    Full text link
    The formation and evolution of a circumstellar disk in magnetized cloud cores is investigated from prestellar core stage until sim 10^4 yr after protostar formation. In the circumstellar disk, fragmentation first occurs due to gravitational instability in a magnetically inactive region, and substellar-mass objects appear. The substellar-mass objects lose their orbital angular momenta by gravitational interaction with the massive circumstellar disk and finally fall onto the protostar. After this fall, the circumstellar disk increases its mass by mass accretion and again induces fragmentation. The formation and falling of substellar-mass objects are repeated in the circumstellar disk until the end of the main accretion phase. In this process, the mass of fragments remain small, because the circumstellar disk loses its mass by fragmentation and subsequent falling of fragments before it becomes very massive. In addition, when fragments orbit near the protostar, they disturb the inner disk region and promote mass accretion onto the protostar. The orbital motion of substellar-mass objects clearly synchronizes with the time variation of the accretion luminosity of the protostar. Moreover, as the objects fall, the protostar shows a strong brightening for a short duration. The intermittent protostellar outflows are also driven by the circumstellar disk whose magnetic field lines are highly tangled owing to the orbital motion of fragments. The time-variable protostellar luminosity and intermittent outflows may be a clue for detecting planetary-mass objects in the circumstellar disk.Comment: 48 pages, 16 figures, accepted for publication in Ap

    Evaluating tools for the spatial management of fisheries

    Get PDF
    1. The ability to define the spatial dynamics of fish stocks is critical to fisheries man- agement. Combating illegal, unreported and unregulated fishing and the regula- tion of area-based management through physical patrols and port side controls are growing areas of management attention. Augmenting the existing approaches to fisheries management with forensic techniques has the potential to increase compliance and enforcement success rates. 2. We tested the accuracy of three techniques (genotyping, otolith microchemistry and morphometrics) that can be used to identify geographic origin. We used fish caught from three fishing grounds, separated by a minimum of 5 km and a maxi- mum of 60 km, to test the accuracy of these approaches at relatively small spatial scales. 3. Using nearest-neighbour analyses, morphometric analysis was the most accurate (79.5%) in assigning individual fish to their fishing ground of origin. Neither otolith microchemistry (54.0%) or genetic analyses (52.4%) had sufficient accuracy at the spatial scales we examined. 4. Synthesis and applications. The combination of accuracy and minimal resource re- quirements make morphometric analysis a promising tool for assessing compli- ance with area-based fishing restrictions at the scale of kilometres. Furthermore, this approach has promising application, in small-scale fisheries through to com- munity-based management approaches where technical and financial resources are limited

    Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles

    Full text link
    We use 3-dimensional numerical simulations of self-gravitating compressible turbulent gas in combination with Lagrangian tracer particles to investigate the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer particles are used to represent shock-compressed dense gas, which is associated with H2. We deposit tracer particles in regions of density contrast in excess of ten times the mean density. Following their trajectories and using probability distribution functions, we find an upper limit for the mixing timescale of H2, which is of order 0.3 Myr. This is significantly smaller than the lifetime of molecular clouds, which demonstrates the importance of the turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and Beyond 2007
    • …
    corecore