29 research outputs found
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
Trigger and Aperture of the Surface Detector Array of the Pierre Auger Observatory
The surface detector array of the Pierre Auger Observatory consists of 1600
water-Cherenkov detectors, for the study of extensive air showers (EAS)
generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy,
from the identification of candidate showers at the level of a single detector,
amongst a large background (mainly random single cosmic ray muons), up to the
selection of real events and the rejection of random coincidences. Such trigger
makes the surface detector array fully efficient for the detection of EAS with
energy above eV, for all zenith angles between 0 and
60, independently of the position of the impact point and of the mass
of the primary particle. In these range of energies and angles, the exposure of
the surface array can be determined purely on the basis of the geometrical
acceptance.Comment: 29 pages, 12 figure
The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers
produced by cosmic rays above 10^17 eV. During clear nights with a low
illuminated moon fraction, the UV fluorescence light produced by air showers is
recorded by optical telescopes at the Observatory. To correct the observations
for variations in atmospheric conditions, atmospheric monitoring is performed
at regular intervals ranging from several minutes (for cloud identification) to
several hours (for aerosol conditions) to several days (for vertical profiles
of temperature, pressure, and humidity). In 2009, the monitoring program was
upgraded to allow for additional targeted measurements of atmospheric
conditions shortly after the detection of air showers of special interest,
e.g., showers produced by very high-energy cosmic rays or showers with atypical
longitudinal profiles. The former events are of particular importance for the
determination of the energy scale of the Observatory, and the latter are
characteristic of unusual air shower physics or exotic primary particle types.
The purpose of targeted (or "rapid") monitoring is to improve the resolution of
the atmospheric measurements for such events. In this paper, we report on the
implementation of the rapid monitoring program and its current status. The
rapid monitoring data have been analyzed and applied to the reconstruction of
air showers of high interest, and indicate that the air fluorescence
measurements affected by clouds and aerosols are effectively corrected using
measurements from the regular atmospheric monitoring program. We find that the
rapid monitoring program has potential for supporting dedicated physics
analyses beyond the standard event reconstruction
A Search for Photons with Energies Above 2X10(17) eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Ultra-high-energy photons with energies exceeding 10(17) eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10(15) eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 x 10(17) eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10(17) and 10(18) eV
An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources
A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 degrees. recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7 sigma-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed
Ultrahigh energy neutrinos at the Pierre Auger observatory
The observation of ultrahigh energy neutrinos (UHEνs) has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν) or in the Earth crust (Earth-skimming ν), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.P. Abreu ... K. B. Barber ... J. A. Bellido ... R. W. Clay ... M. J. Cooper ... B. R. Dawson ... T. A. Harrison ... A. E. Herve ... V. C. Holmes ... J. Sorokin ... P. Wahrlich ... B. J. Whelan ... et al
A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory
Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region
Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the \u2018ankle\u2019 at lg\u2061(E/eV)=18.5\u201319.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth