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Abstract

The surface detector array of the Pierre Auger Observatory consists of
1600 water-Cherenkov detectors, for the study of extensive air showers (EAS)
generated by ultra-high-energy cosmic rays. We describe the trigger hierar-
chy, from the identification of candidate showers at the level of a single detec-
tor, amongst a large background (mainly random single cosmic ray muons),
up to the selection of real events and the rejection of random coincidences.
Such trigger makes the surface detector array fully efficient for the detection
of EAS with energy above 3 × 1018 eV, for all zenith angles between 0◦ and
60◦, independently of the position of the impact point and of the mass of
the primary particle. In these range of energies and angles, the exposure of
the surface array can be determined purely on the basis of the geometrical
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acceptance.

Key words: Ultra high energy cosmic rays, Auger Observatory, Extensive
air showers, Trigger, Exposure
PACS: 95.85.Ry, 96.40.Pq

1. Introduction1

The main objective of the Pierre Auger Collaboration is to measure the2

flux, arrival direction distribution and mass composition of cosmic rays from3

≈ 1018 eV up to the highest energies. Due to the very low fluxes at these4

energies, cosmic rays have to be measured through the extensive air showers5

(EAS) they produce in the atmosphere.6

The Pierre Auger Observatory, located near Malargüe, Argentina, at 14007

m asl, detects EAS in two independent and complementary ways. It includes8

a surface detector array (SD), consisting of 1600 water-Cherenkov detectors9

[1] on a triangular grid of 1.5 km spacing covering an area of approximately10

3000 km2, which detects the secondary particles at ground level and thus11

samples their lateral density distribution. The surface detector array is over-12

looked by a fluorescence detector (FD) consisting of 24 telescopes at four13

sites, which measure the fluorescence light emitted along the path of the air-14

showers and thus traces their longitudinal development [2]. Showers detected15

by both detectors are called hybrid events and they are characterised more16

accurately with respect to direction and energy than using either technique17

alone. However, the livetime of the FD is limited to ≈ 13%, as it only op-18

erates on clear, moonless nights [2]. The bulk of data is provided by the SD19

with its nearly 100% livetime. The study of the trigger and the determina-20

tion of the aperture of the SD is thus essential for the physics aims of the21

Pierre Auger Observatory.22

The SD data acquisition (DAQ) trigger must fulfill both physical and23

technical requirements. The main limitation to the rate of recordable events24

comes from the wireless communication system which connects the surface25

detectors to the central campus. The latter must serve continuously 160026

stations spread over 3000 km2, each using an emitter consuming less than27

1 W power to transmit to collectors as far as 40 km away. The maximum28

sustainable rate of events per detector is less than one per hour, to be com-29

pared to the 3 kHz counting rate per station, due to the atmospheric muon30

flux. The trigger thus must reduce the single station rate, without induc-31

7



ing loss of physics events. It must also allow data acquisition down to the32

lowest possible energy. To deal with all these requirements, the design of33

the DAQ SD trigger (described in section 3) has been realised in a hierar-34

chical form, where at each level the single station rate becomes less and less,35

by means of discrimination against background stricter and stricter. At the36

same time, the DAQ trigger is designed to allow the storage of the largest37

possible number of EAS candidates .38

The ultimate discrimination of EAS from chance events due to combina-39

torial coincidences among the surface detectors is performed off-line through40

a selection of physics events, and of detectors participating in each of them.41

The event selection procedure is hierarchical too, it is described in section 4.42

In section 5.1, we show that the trigger and event selection hierarchy43

makes the array fully efficient for the detection of showers above 3×1018 eV.44

We restrict ourselves to this energy range for the calculation of the exposure45

(described in section 5.2), which is simply proportional to the observation46

time and to the geometrical size of the SD array. Under these conditions the47

calculation of the exposure is very robust and almost devoid of systematic48

uncertainties. Therefore it is straightforward to calculate the cosmic ray flux49

as the ratio of the number of collected events to the effective, as it was done50

in the measurement of the cosmic ray spectrum by the surface detector of51

Auger [3].52

2. The surface detector of the Pierre Auger Observatory53

Each water Cherenkov detector of the surface array has a 10 m2 water54

surface area and 1.2 m water depth, with three 9” photomultiplier tubes55

(PMTs) looking through optical coupling material into the water volume,56

which is contained in a Tyvek R© reflective liner [1, 4]. Each detector operates57

autonomously, with its own electronics and communications systems powered58

by solar energy. Each PMT provides two signals, which are digitised by 4059

MHz 10-bit Flash Analog to Digital Converters (FADCs). One signal is60

directly taken from the anode of the PMT, and the other signal is provided61

by the last dynode, amplified and inverted within the PMT base electronics to62

a total signal nominally 32 times the anode signal. The two signals are used63

to provide sufficient dynamic range to cover with good precision both the64

signals produced in the detectors near the shower core (∼ 1000 particles/µs)65

and those produced far from the shower core (∼ 1 particle/µs). Each FADC66

bin corresponds to 25 ns [4].67
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The signals from the three PMTs are sent to a central data acquisition system68

(CDAS) once a candidate shower event triggers the surface detector array (see69

section 3.2). The total bandwidth available for data transmission from the70

detectors to the CDAS is 1200 bits per second, which precludes the possibility71

of any remote calibration. For this reason, the calibration of each detector72

is performed locally and automatically. It relies on the measurement of the73

average charge collected by a PMT from the Cherenkov light produced by a74

vertical and central through-going muon, QV EM [5]. The water-Cherenkov75

detector in its normal configuration has no way to select only vertical muons.76

However, the distribution of the light of atmospheric muons produces a peak77

in the charge distribution, Qpeak
V EM (or VEM in short), as well as a peak in78

that of the pulse height, IpeakV EM , both of them being proportional to those79

produced by a vertical through-going muon. The calibration parameters are80

determined with 2% accuracy every 60 s and returned to the CDAS with81

each event. Due to the limited bandwidth, the first level triggers are also82

performed locally. These triggers (section 3.1) are set in electronic units83

(channels): the reference unit is IpeakV EM .84

With respect to shower reconstruction, the signals recorded by the detec-85

tors - evaluated by integrating the FADC bins of the traces - are converted86

to units of QV EM . These are fitted with a measured Lateral Distribution87

Function (LDF) [11], that describes S(r), the signals as a function of dis-88

tance r from the shower core, to find the signal at 1000 m, S(1000) [6]. The89

variation of S(1000) with zenith angle θ arising from the evolution of the90

shower, is quantified by applying the constant integral intensity cut method91

[7], justified by the approximately isotropic flux of primary cosmic rays. An92

energy estimator for each event, independent of θ, is S38, the S(1000) that93

EAS would have produced had they arrived at the median zenith angle, 38◦.94

The energy corresponding to each S38 is then obtained through a calibration95

with the fluorescence detector based on a subset of high-quality hybrid events96

[3].97

3. The DAQ trigger system of the surface detector array98

The trigger for the surface detector array is hierarchical. Two levels of99

trigger (called T1 and T2) are formed at each detector. T2 triggers are com-100

bined with those from other detectors and examined for spatial and temporal101

correlations, leading to an array trigger (T3). The T3 trigger initiates data102
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acquisition and storage. The logic of this trigger system is summarised in103

figure 1.104
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Figure 1: Schematics of the hierarchy of the trigger system of the Auger surface detector.

3.1. Single detector triggers105

The T1 triggers data acquisition in each water Cherenkov detector: data106

are stored on the local disk for 10 s waiting for a possible T3. Two indepen-107

dent trigger modes are implemented as T1, having been conceived to detect,108

in a complementary way, the electromagnetic and muonic components of an109

air-shower. The first T1 mode is a simple threshold trigger (TH) which re-110

quires the coincidence of the three PMTs each above 1.75 IpeakV EM
1. This trigger111

is used to select large signals that are not necessarily spread in time. It is par-112

ticularly effective for the detection of very inclined showers that have crossed113

a large amount of atmosphere and are consequently dominantly muonic. The114

TH-T1 trigger is used to reduce the rate due to atmospheric muons from ≈3115

kHz to ≈100 Hz. The second T1 mode makes use of the fact that, for other116

than very inclined showers or signals from more vertical showers very close117

to the shower axis, the arrival of particles and photons at the detector is118

dispersed in time [8, 9]. For example, at 1000 m from the axis of a vertical119

shower, the time for the signal from a water-Cherenkov detector to rise from120

10 to 50% is about 300 ns. The second mode is designated the “Time-over-121

Threshold” trigger (ToT) and at least 13 bins (i.e. >325 ns) in 120 FADC122

1For detectors with only two (one) operating PMTs the threshold is 2 (2.8) I
peak
V EM .
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bins of a sliding window of 3µs are required to be above a threshold of 0.2123

IpeakV EM in coincidence in 2 out of 3 PMTs2. This trigger is intended to select124

sequences of small signals spread in time. The ToT trigger is thus optimised125

for the detection of near-by, low energy showers, dominated by the electro-126

magnetic component, or for high-energy showers where the core is distant.127

The time spread arises from a combination of scattering (electromagnetic128

component) and geometrical effects (muons) as discussed in [8, 9] where de-129

tails are given of how the time spread depends on distance and zenith angle.130

Since the average signal duration of a single muon is only about 150 ns, the131

time spread of the ToT (325 ns) is very efficient at eliminating the random132

muon background. The ToT rate at each detector is < 2Hz and is mainly133

due to the occurrence of two muons arriving within 3µs, the duration of the134

sliding window.135

The T2 is applied in the station controller to reduce to about 20Hz the136

rate of events per detector. This reduction is done to cope with the band-137

width of the communication system between the detectors and the central138

campus. The T2 triggers, namely their time stamp and the kind of T2, are139

sent to the CDAS for the formation of the trigger of the array. All ToT-T1140

triggers are promoted to the T2 level, whereas TH-T1 triggers are requested141

to pass a further higher threshold of 3.2 IpeakV EM in coincidence among the three142

PMTs3. The rates of the TH-T2 triggers are rather uniform in the detectors143

over the whole array within a few percent, while those due to the ToT-T2144

are less uniform. This is due to the fact that the ToT is very sensitive to the145

shape of the signal, this in turn depending on the characteristics of the water,146

the reflective liner in the detector and the electronic pulse shaper. However,147

the lack of uniformity of the trigger response over the array does not af-148

fect the event selection or reconstruction above the energy corresponding to149

saturated acceptance.150

3.2. Trigger of the surface array151

The third level trigger, T3, initiates the central data acquisition from the152

array. It is formed at the CDAS, and it is based on the spatial and temporal153

combination of T2. Once a T3 is formed, all FADC signals from detectors154

2For detectors with only two (one) operating PMTs, the algorithm is applied to two
(one) PMTs.

3For detectors with only two (one) operating PMTs the threshold is set to 3.8 (4.5)

I
peak

V EM .
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passing the T2 are sent to the CDAS, as well as those from detectors passing155

the T1 but not the T2, provided that they are within 30 µs of the T3.156

The trigger of the array is realised in two modes. The first T3 mode157

requires the coincidence of at least three detectors that have passed the ToT158

condition and that meet the requirement of a minimum of compactness,159

namely, one of the detectors must have one of its closest neighbours and160

one of its second closest neighbours triggered. It is called "ToT2C1&3C2",161

where Cn indicates the nth set of neighbours (see figure 2). Once the spatial162

coincidence is verified, timing criteria are imposed: each T2 must be within163

(6 + 5Cn)µs of the first one. An example of such T3 configuration is shown164

in figure 2, left. Since the ToT as a local trigger has very low background,165

this trigger selects predominantly physics events. The rate of this T3 with166

the full array in operation is around 1600 events per day, meaning that each167

detector participates in an event about 3 times per day. This trigger is168

extremely pure since 90% of the selected events are real showers and it is169

mostly efficient for showers below 60◦. The 10% remaining are caused by170

chance coincidences due to the permissive timing criteria. The second T3171

mode is more permissive. It requires a four-fold coincidence of any T2 with172

a moderate compactness. Namely, among the four fired detectors, within173

appropriate time windows, at least one must be in the first set of neighbours174

from a selected station (C1), another one must be in the second set (C2)175

and the last one can be as far as in the fourth set (C4). This trigger is176

called "2C1&3C2&4C4". Concerning timing criteria, we apply the same logic177

as for the "ToT2C1&3C2". An example of such T3 configuration, is shown178

in figure 2, right. Such a trigger is efficient for the detection of horizontal179

showers that, being rich in muons, generate in the detectors signals that have180

a narrow time spread, with triggered detectors having wide-spread patterns181

on the ground. With the full array configuration, this trigger selects about182

1200 events per day, out of which about 10% are real showers.183
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Figure 2: Example of T3 configurations: the 3-fold T3 mode ToT 2C1&3C2 is shown on
the left and the 4-fold mode 2C1&3C2&4C4 on the right (see text for the definitions). C1,
C2, C3, C4 indicate the first, second, third and fourth sets of neighbours, respectively at
1.5, 3, 4.5 and 6 km from a given detector.

3.3. Efficiency of the single detector trigger184

The single detector trigger probability as a function of the signal, P(S),185

besides being important for the determination of the efficiency of the trigger186

of the array, is also of use in the event reconstruction where non-triggered187

detectors are included up to 10 km from a triggered one [10].188

The T1 efficiency versus signal in the detector, P(S), is determined by189

using the very large statistics of EAS (≈ 106) recorded by the surface detector190

array. For each detected EAS, and each participating detector, we measure191

the trigger probability P(S) as the ratio NT (S)
NON(S)

, in different bins of θ and192

S(1000), of the number of triggered stations, NT , to the total number of193

active stations, NON . S is the expected signal at a detector, based upon the194

LDF fitted from the measured values from each detector, and S(1000) is the195

signal strength at 1 km, as derived from this fit. Since P(S) is obtained from196

events that actually produced a T3, the method is biased by events with a197

positive fluctuation in the signal. This bias can be corrected by Monte Carlo198

simulations and is found to be negligible at energies above around 3 × 1018199

eV. Limiting the analysis to showers with S38 > 16 VEM (corresponding to200

about 3 × 1018eV), the trigger probability versus signal is derived averaging201

over all the bins in θ and S(1000). This is shown in figure 3 (circles): the202

probability becomes > 0.95% for S ≈ 10 VEM. This result is confirmed by an203

independent analysis that makes use of showers triggering certain detectors204

that have been specially located very close to one another. The surface205

array has seven positions in which three detectors (so called triplets) have206

been deployed at 11 m from each other. In each triplet, only one detector207
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(master) sends T2 to CDAS, while the other two (slaves) are independently208

read out each time a T3 is generated and if they pass the T1. For each209

slave, the trigger probability versus recorded signal S is derived from the210

ratio between the number of events where both slaves have triggered and211

the number of events where only the other one has triggered. Depending if212

one or two slaves have triggered, S is either the signal of the only triggered213

detector or the average of the two.214
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Figure 3: Single detector trigger probability as a function of the signal in the detector,
P(S), obtained from triplets data (triangles) and from showers data with E > 3× 1018 eV
(circles).

From the analysis of about 10000 events, and combining the probabilities215

for the two slaves, P(S) is obtained and it is shown in figure 3 (triangles), in216

good agreement with the one obtained by showers data.217

4. Event selection of the surface detector array for showers with218

zenith angle below 60◦
219

A selection of physics events and of detectors belonging to each event is220

made after data acquisition. Indeed, a large number of chance coincidence221

events is expected due to the large number of possible combinations among222

the single detectors. We focus here on the selection of events between 0◦ and223

60◦ since more inclined showers have different properties and require specific224

selection criteria described elsewhere [12].225
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Two successive levels of selection are implemented. The first one (physics226

trigger) is based on space and time configurations of the detector, besides227

taking into account the kind of trigger in each of them. The second one228

(fiducial trigger) requires that the shower selected by the physics trigger is229

contained within the array boundaries, to guarantee the accuracy of the event230

reconstruction both in terms of arrival direction and energy determination.231

The logic of this off-line trigger system and its connection to the DAQ triggers232

is summarised in figure 4.233
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Figure 4: Schematics of the hierarchy of the event selection of the Auger surface detector.

4.1. Physics trigger234

The physics trigger, T4, is needed to select real showers from the set of235

stored T3 data. Two criteria are defined, with different aims. The first T4236

criterion, so-called 3ToT, requires 3 nearby stations, passing the T2-ToT, in237

a triangular pattern. It requires additionally that the times of the signals in238

the 3 stations fit to a plane shower front moving at the speed of the light.239

The number of chance coincidence passing the 3ToT condition over the full240

array is less than one per day, thanks to the very low rate of the T2-ToT.241

Due to their compactness, events with zenith angles below 60◦are selected242

with high efficiency, i. e. more than 98%.243

The second T4 criterion, so called 4C1, requires 4 nearby stations, with244

no condition on the kind of T2. In this case also, it is required that the245

times of the signals in the 4 stations fit to a plane shower front moving at246
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the speed of the light. This 4C1 trigger brings to ≈100% the efficiency for247

showers below 60◦.248

The zenith angle distribution of events selected by the T4 criteria is shown249

in figure 5, left, in the unfilled histogram for 3ToT, and in the filled one for250

the 4C1 that are not 3ToT: the two criteria are clearly complementary, the251

latter favouring the selection of events with larger zenith angles. In figure 5,252

right, the energy distributions of events selected by the two different criteria253

are shown: those selected by 3ToT have a median energy around 6 × 1017254

eV, while for those selected by 4C1 it is around 3× 1018 eV.255
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Figure 5: Left: Angular (left) and energy (right) distribution of events selected by the T4
triggers: 3ToT (unfilled histogram), and 4C1, not ToT (filled histogram).

Besides disentangling accidental events, there is also the need to identify,256

and reject, accidental detectors in real events, i.e. detectors whose signals257

are by chance in time with the others, but that in fact are not part of the258

event. To this aim, we define a "seed" made by 3 neighbouring detectors in259

a non-aligned configuration. If there is more than one triangle of stations,260

the seed with the highest total signal is chosen. If the T4 is a 3ToT, only261

ToT detectors can be considered to define the seed; if it is a 4C1, also TH262

detectors can be included. Once the triangle has been determined, the arrival263

direction is estimated by fitting the arrival times of the signals to a plane264

shower front moving with the speed of light. Subsequently, all other detectors265

are examined, and are defined as accidental if their time delay with respect266

to the front plane is outside a time window of [−2µs : +1µs]. Detectors that267
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have no triggered neighbours within 3 km are always removed.268

After the selection chain (both event selection and accidental detectors269

removal), 99.9% of the selected events pass the full reconstruction procedure,270

that is arrival direction, core position and S(1000) are determined.271

4.2. Fiducial trigger272

The need for a fiducial trigger, T5, mainly arises from events falling close273

to the border of the array, where a part of the shower may be missing. In274

figure 6 a hybrid event is shown, that triggered the SD and one of the FD275

telescopes, where a part of the SD information is missing due to its position276

on the border of the array.277

Figure 6: Example of a hybrid, non-T5, event: the event falls on the border of the SD
array, triggering only four detectors. Filled circles indicate the triggered ones, open circles
the non-triggered active ones. The dimensions of the filled circles are proportional to
the measured signal. The shower detector plane reconstructed by FD (dash-dotted line)
indicates that the core is within the triangle of detectors. The SD only reconstruction
places it outside the array (cross), artificially increasing the event energy.

Such events could have wrong core positions, and consequently, incor-278

rect energies, as in this example where the energy derived by SD is more279

than 4 times larger than the one estimated by FD (1.4 × 1019 eV instead280

of 3 × 1018 eV). The main task of the fiducial trigger is thus to select only281

events well contained in the array, ensuring that the shower core is properly282

reconstructed.283
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The fiducial trigger should be applied a priori on the events, to be inde-284

pendent of the reconstruction procedure. The T5 adopted requires that the285

detector with the highest signal has all its 6 closest neighbours working at286

the time of the event (i.e., it must be surrounded by a working hexagon).287

This ensures adequate containment of the event inside the array. Even in the288

case of a high energy event that falls inside, but close to the border of the289

array, where part of the data may be missing, information from the seven290

detectors closest to the shower core ensures a proper reconstruction. Apply-291

ing this condition, the maximum statistical uncertainty in the reconstructed292

S(1000) due to event sampling by the array is ≈ 3% [10]. It has to be noted293

that this criterion also discards events that, though contained, fall close to294

a non-working detector: this is an important issue because, due to the large295

number of detectors distributed over 3000 km2, about 1% of the detectors are296

expected to be not functioning at any moment, even with constant detector297

maintenance. For the fully completed array, and taking this into account,298

the application of the T5 condition reduces the effective area by 10% with299

respect to the nominal one.300

Finally, the use of the fiducial trigger allows the effective area of the array301

to saturate to the geometrical one above a certain primary energy. Indeed,302

with no conditions on event containment, the acceptance would increase with303

increasing energy, since showers falling outside the borders of the array might304

still trigger sufficient detectors to be recorded; the higher their energy, the305

farther the distance.306

5. Aperture and exposure of the surface detector array for showers307

with zenith angle below 60 degrees308

The aperture of the surface detector array is given by the effective area309

integrated over solid angle. When the trigger and event selection have full310

efficiency, i.e. when the acceptance does not depend on the nature of the311

primary particle, its energy or arrival direction, the effective area coincides312

with the geometrical one. In subsection 5.1, the energy above which the313

acceptance saturates is derived. In section 5.2, the calculation of the exposure314

above this energy is detailed.315

5.1. Determination of the acceptance saturation energy316

I. From SD data. The acceptance saturation energy, ESAT , is deter-317

mined using two different methods that use events recorded by the surface318
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detector array. In the first one, starting from detected showers, mock events319

are generated by fluctuating the amplitude of the signals recorded in each320

detector and their arrival time. Such fluctuations are measured [13, 14] by321

using twin detectors located at 11 m from each other. To each simulated322

event, the full trigger and event selection chain are applied. From the ratio323

of the number of triggered events to the simulated, the trigger efficiency is324

obtained as a function of energy, as shown in figure 7 (triangles). As can325

be seen, the trigger probability becomes almost unity (> 97%) at energy326

E ∼ 3×1018 eV for all angles between 0◦ and 60◦. The fact that the method327

is based on the use of showers that actually triggered the array may bias328

the estimation of the trigger probability at low energy. However, it does not329

bias the result on the trigger probability close to full efficiency, and hence on330

ESAT .331
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Figure 7: Trigger efficiency as a function of energy, derived from SD data (triangles) and
hybrid data (circles).

II. From hybrid data. The hybrid data sample is composed of events332

observed by the FD and that triggered at least one SD detector: consequently,333

it has an intrinsically lower energy threshold than the SD. For each bin in334

energy (of width 0.2 in log10(E)), the number of events that pass the SD335
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trigger out of the total number of events are counted. To avoid biases from336

primary composition, the same data selection criteria as in [15] are used.337

Additionally, in analogy with the T5, to avoid the effects of the borders338

of the array, it is required that the detector used in the hybrid geometry339

reconstruction is surrounded by 6 active detectors. The trigger efficiency of340

the surface detector array is found to be saturated (> 97% ) for energies341

above 3 × 1018 eV, as shown in figure 7 (circles), in agreement with what is342

obtained by the analysis of SD data alone.343

III. Cross-check with simulations. ESAT is finally cross-checked us-344

ing full shower and detector simulations. The simulation sample consists of345

about 5000 proton, 5000 photon and 3000 iron showers simulated using COR-346

SIKA [16] with zenith angle distributed as sin θ cosθ (θ <60◦) and energies347

ranging between 1017 eV and 1019.5 eV in steps of 0.25 (0.5 for photons) in348

log10(E). The showers are generated using QGSJET-II [17] and FLUKA [18]349

for high and low energy hadronic interactions, respectively. Core positions350

are uniformly distributed at ground and each shower is used five times, each351

time with a different core position, to increase the statistics with a negligible352

degree of correlation. The surface detector array response is simulated using353

Geant4 [19] within the framework provided by the Offline software [20]. The354

resulting trigger probability as a function of the Monte Carlo energy for pro-355

ton, iron and photon primaries is shown in Figure 8 for 0◦ < θ < 60◦. Due356

to their larger muon content, at low energies iron primaries are slightly more357

efficient at triggering the array than protons. However, the trigger becomes358

fully efficient at 3× 1018 eV, both for proton and iron primaries, in different359

intervals of zenith angles. It is important to notice that the trigger efficiency360

for photons is much lower. This is because photons tend to produce deeper361

showers that are poor in muons.362
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Figure 8: SD trigger efficiency as a function of Monte Carlo energy E for proton (circles),
iron (triangles) and photon primaries (squares) and zenith angle integrated up to 60◦.
Lines are drawn only to guide the eyes.

5.2. Calculation of the integrated exposure363

The studies described above have shown that the full efficiency of the364

SD trigger and event selection is reached at 3 × 1018 eV. Above this energy,365

the calculation of the exposure is based solely on the determination of the366

geometrical aperture and of the observation time.367

With respect to the aperture, the choice of a fiducial trigger based on368

hexagons, as explained in section 4.2, allows us to exploit the regularity of369

the array very simply. The aperture of the array is obtained as a multiple of370

the aperture of an elemental hexagon cell, acell, defined as any active detector371

with six active neighbours, as shown in figure 9.372

21



��
��
��
��
��

��
��
��
��
��

Figure 9: Scheme of an hexagon of detectors: the elemental hexagon cell, acell, is the
shaded area around the central detector.

At full efficiency, the detection area per cell is 1.95 km2. The correspond-373

ing aperture for showers with θ < 60◦ is then acell ≃ 4.59 km2 sr. The number374

of cells, Ncell(t), is not constant over time due to temporary problems at the375

detectors (e. g. failures of electronics, power supply, communication system,376

etc...). Ncell(t) is monitored second by second: we show in figure 10 the evo-377

lution of Ncell(t) between the start of the data taking, January 2004, and378

December 2008. Such precise monitoring of the array configurations allows379

us to exploit data during all deployment phases, clearly visible in the figure,380

as well as during unstable periods as during, for example, January 2008 when381

huge storms affected the communication system.382
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Figure 10: Evolution of the number of hexagonal cells (see text) between January 1st,
2004 and December 31st, 2008

The second-by-second monitoring provides at the same time the aperture383

of the array per second, acell × Ncell(t), as well as the observation time with384

high precision. To calculate the integrated exposure over a given period of385

time, the aperture of the array, Ncell(t)×acell, is integrated over the number of386

live seconds. This calculation is expected to be very precise, since it is based387

on a purely geometrical aperture and a very good time precision. However388

both the determination of Ncell(t) and of the observation time are affected389

by uncertainties.390

Concerning the determination of Ncell(t), to evaluate the uncertainty in391

the number of active detectors, a check of the consistency of the event rate of392

each detector with its running time, determined from the monitoring system,393

is performed. The uncertainty derived from this study is added to that due394

to errors of communication between the station and the DAQ, which are also395

monitored. Overall, the uncertainty on the determination of Ncell(t) amounts396

to about 1.5%.397

For the determination of the observation time, and related uncertainty,398

the dead time that is unaccounted for in the second by second monitoring399
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of the array, is taken into account4. To determine these, an empirical tech-400

nique is exploited, based on the study of the distribution of the arrival times401

of events, under the reasonable hypothesis that they follow a Poisson dis-402

tribution. Given the constant rate λ for the T5 event rate per hexagon,403

λ ≈ 1.4 × 10−5 event per second per hexagon, the probability P that the404

time interval T between two consecutive T5 events be larger than T is given405

by: P (T ) = e−λT . We define intervals as dead time if the Poisson probability406

of their occurrance is less than 10−5. As an example, we show in figure 11407

the distribution of time differences for events acquired in 2008. The distribu-408

tion is exponential with a time constant of 72.4 seconds, as expected for the409

above value of λ and the observed average number of live hexagons during410

that year. In the figure, the points outside the filled area show those time411

intervals that have occurred with a Poisson probability less than 10−5.412
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Figure 11: Distribution of time differences between events in 2008. The points outside the
filled area show the dead times (see text). The exponential fit is shown as a dashed line
in the inset where the histograms are zoomed.

The identified dead times generally correspond to periods of software413

4This dead time can be due either to problems in the communication between the
stations and the CDAS or to problems of data storage in the stations
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modifications at the level either of the single detectors or of the CDAS. These414

were rather frequent during the deployment phase of the surface detector415

array, which lasted until June 2008. The uncertainty in the determination416

of the livetime is estimated to be around 1%. Between January 2004 and417

December 2008, the livetime of the surface detector array data acquisition is418

96%. Hidden dead times reduce the effective livetime to 87%, the reduction419

being mostly due to the two first years of operation. However, due to the420

growth of the surface detector array, their impact on the total integrated421

exposure is a reduction of only 3%.422

6. Conclusions423

The DAQ trigger of the surface detector array of the Pierre Auger Ob-424

servatory is organised in a hierarchical way, starting at the level of the single425

detector (T1, T2) up to the data acquisition (T3). The selection of events426

below 60◦ takes place off-line, and it is also hierarchical (T4, T5). The whole427

chain, from the single detector trigger, up to event selection, is able to re-428

duce the counting rate of the single detector from about 3 kHz, due mainly429

to single, uncorrelated, cosmic muons, down to about 3 × 10−5 Hz. This430

final rate is due to extensive air showers, more than 99% of which pass the431

reconstruction chain.432

In spite of the large number of detectors and the possible number of433

chance events due to combinatorial coincidences among the detectors, the434

high-purity Time Over Threshold trigger enables the main trigger of the435

array to be kept at the level of a 3-fold coincidence, thus extending the436

range of physics that can be studied. Such a trigger, together with the437

event selection strategy, allows the acquisition and reconstruction of about438

one cosmic ray shower per minute, with median energy around 6× 1017 eV.439

Moreover, it makes the surface detector array fully efficient for showers due to440

primary cosmic rays above 3×1018 eV, independent of their mass and arrival441

directions. The trigger provides at the same time a larger overlapping energy442

region with the FD, which is naturally efficient at lower energies, allowing443

the measurement of the cosmic ray spectrum down to 1018 eV [21].444

Above 3× 1018 eV, the calculation of the exposure is purely geometrical,445

being the integration of the geometrical aperture over the observation time.446

Both of them are known with high precision, so that the overall uncertainty447

on the integrated exposure is less than 3%. The integrated SD exposure as a448

function of time is shown in figure 12, from January 2004 to December 2008:449
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at the end of the period it amounts to 12790±380 km2 sr yr. Even though the450

SD was under continuous deployment until June 2008, the effective livetime of451

the surface detector array averaged over all the five years is high, being 87%.452

The effective livetime of the SD is 96% for 2008 alone: with this livetime and453

the full surface detector array deployed, the exposure is expected to increase454

by about 500 km2 sr yr per month.455

Figure 12: Evolution of the integrated exposure between January 1st, 2004 and December
31st, 2008
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