110 research outputs found

    Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor

    Get PDF
    BACKGROUND: Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. HYPOTHESIS: We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. TESTING THE HYPOTHESIS: Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. IMPLICATIONS OF THE HYPOTHESIS: We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Cultura de Inovação: Conceitos e Modelos Teóricos

    Get PDF
    This study portrays the state of the art in scientific literature on the culture of innovation, with the objective of characterizing its meaning and especially describing different theoretical models that seek to understand how it occurs in an organizational environment. To enrich the analysis, research results show the relationship between organizational culture and innovation. The literature review was carried out in 2011 using the following databases: Coordination for the Improvement of Higher Education Personnel (CAPES), Proquest and Directory of Open Access Journals (DOAJ). The keywords used were the expression culture of innovation and the joint terms culture and innovation, only full articles were included in the research. Culture of innovation articles that were cited in the papers identified in the literature search were also considered. The analysis consisted of 40 articles, based on the predefined criteria, and showed that this is a topic of interest for researchers in different world regions. It is a complex theme determined by factors with a systemic character. There is a predominance of quantitative research and strong evidence of a relationship between organizational culture and innovation, which requires further research to test the theoretical models proposed by these different authors

    Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations

    Get PDF
    Visna/Maedi, or ovine progressive pneumonia (OPP) as it is known in the United States, is an incurable slow-acting disease of sheep caused by persistent lentivirus infection. This disease affects multiple tissues, including those of the respiratory and central nervous systems. Our aim was to identify ovine genetic risk factors for lentivirus infection. Sixty-nine matched pairs of infected cases and uninfected controls were identified among 736 naturally exposed sheep older than five years of age. These pairs were used in a genome-wide association study with 50,614 markers. A single SNP was identified in the ovine transmembrane protein (TMEM154) that exceeded genome-wide significance (unadjusted p-value 3×10−9). Sanger sequencing of the ovine TMEM154 coding region identified six missense and two frameshift deletion mutations in the predicted signal peptide and extracellular domain. Two TMEM154 haplotypes encoding glutamate (E) at position 35 were associated with infection while a third haplotype with lysine (K) at position 35 was not. Haplotypes encoding full-length E35 isoforms were analyzed together as genetic risk factors in a multi-breed, matched case-control design, with 61 pairs of 4-year-old ewes. The odds of infection for ewes with one copy of a full-length TMEM154 E35 allele were 28 times greater than the odds for those without (p-value<0.0001, 95% CI 5–1,100). In a combined analysis of nine cohorts with 2,705 sheep from Nebraska, Idaho, and Iowa, the relative risk of infection was 2.85 times greater for sheep with a full-length TMEM154 E35 allele (p-value<0.0001, 95% CI 2.36–3.43). Although rare, some sheep were homozygous for TMEM154 deletion mutations and remained uninfected despite a lifetime of significant exposure. Together, these findings indicate that TMEM154 may play a central role in ovine lentivirus infection and removing sheep with the most susceptible genotypes may help eradicate OPP and protect flocks from reinfection

    Quantitative Trait Loci Associated with the Immune Response to a Bovine Respiratory Syncytial Virus Vaccine

    Get PDF
    Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501) which was genotyped for 165 microsatellite markers (covering all autosomes) to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV) specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL) on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected

    Comparative Susceptibility of Sheep of Different Origins, Breeds and PRNP Genotypes to Challenge with Bovine Spongiform Encephalopathy and Scrapie

    Get PDF
    Sheep are natural hosts of the prion disease, scrapie. They are also susceptible to experimental challenge with various scrapie strains and with bovine spongiform encephalopathy (BSE), which affects cattle and has been accidentally transmitted to a range of other species, including man. Incidence and incubation period of clinical disease in sheep following inoculation is controlled by the PRNP gene, which has different alleles defined on the basis of polymorphisms, particularly at codons 136, 154 and 171, although other codons are associated with survival time, and the exact responses of the sheep may be influenced by other breed-related differences. Here we report the results of a long term single study of experimental scrapie and BSE susceptibility of sheep of Cheviot, Poll Dorset and Suffolk breeds, originating from New Zealand and of a wide range of susceptible and resistant PRNP genotypes. Responses were compared with those of sheep from a closed Cheviot flock of UK origin (Roslin Cheviot flock). The unusually long observation period (6-8 years for most, but up to 12 years for others) allows us to draw robust conclusions about rates of survival of animals previously regarded as resistant to infection, particularly PRNP heterozygotes, and is the most comprehensive such study reported to date. BSE inoculation by an intracerebral route produced disease in all genotype groups with differing incubation periods, although M112T and L141F polymorphisms seemed to give some protection. Scrapie isolate SSBP/1, which has the shortest incubation period in sheep with at least one VRQ PRNP allele, also produced disease following sub-cutaneous inoculation in ARQ/ARQ animals of New Zealand origin, but ARQ/ARQ sheep from the Roslin flock survived the challenge. Our results demonstrate that the links between PRNP genotype and clinical prion disease in sheep are much less secure than previously thought, and may break down when, for example, a different breed of sheep is moved into a new flock

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Structure and properties of sputter-deposited CdTe

    No full text
    CdTe films were sputter deposited in thicknesses of 2 to 10 μm using systematically selected deposition conditions. Crystal structure was controllably varied from sharp hexagonal (wurtzite), to highly faulted, to sharp cubic (sphalerite). Electrical resistivity was controllably varied from 10 4 to 108 Ω.cm for p-type material and from 106 to 108 Ω.cm for n-type films. Infrared transmission characteristics for wavelengths near the band edge were controllably varied from highly transparent to highly absorptive. The variation in both the structure and properties of the deposited films was shown to result from the influence of sputter deposition parameters on film composition (stoichiometry). Deposition parameters which influence grain size in the polycrystalline films were established, and grain sizes ranging from 0.2 to 3 μm were produced. Control of the electrical properties of the films by doping with several different acceptor impurities was only slightly successful.Des films minces de CdTe d'épaisseur comprise entre 2 et 10 μm ont été préparés par pulvérisation cathodique dans des conditions expérimentales bien définies. Nous pouvons préparer d'une manière contrôlée des cristaux allant d'une structure fortement hexagonale (wurtzite) à un arrangement cubique (sphalérite) en passant par un milieu désordonné. La résistivité des cristaux peut être choisie entre 104 et 108 Ω.cm pour les films de type p et de 106 à 108 Ω.cm pour le type n. La transmission infra-rouge pour des longueurs d'ondes proches de la largeur de bande peut être rendue très grande ou au contraire très faible. Ces variations de propriétés physiques résultent des différences introduites au moment de la croissance des films qui conduisent à des compositions différentes (stœchiométrie). Les conditions de croissance qui déterminent les dimensions des grains ont été étudiées, des dimensions allant de 0,2 à 3 μm ont été obtenues. Une tentative de dopage de ces couches par différents accepteurs s'est soldée par des résultats peu encourageants
    corecore