315 research outputs found

    Failure of compressible/dilatant geomaterials

    Get PDF

    Removing krypton from xenon by cryogenic distillation to the ppq level

    Get PDF
    The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β\beta-emitter 85^{85}Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon nat\rm{^{nat}}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 1015^{-15} mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\cdot105^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of nat\rm{^{nat}}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN

    TECHNICAL CONSIDERATIONS REGARDING TO HARVESTING PATATOES AND CARROTS EQUIPMENT

    Get PDF
    Potatoes and carrots are two plants of great importance in human life. The two vegetables are grown on increasingly large surfaces, which have led to the need to mechanize their planting, maintenance and harvesting technologies. In the continuation of the material, we will find some types of potato, carrot and root crops for both small surfaces and large and very large surfaces.The harvesting technologies of the two plants are similar, so for the types of potato or carrot picking machines (beet, onions, etc.) and leaves the crop on the furrow, the same type of machine can be used. The diversity of these harvesters is very high from one-row or two-row universal trailed to self-propelled harvesters specialized in harvesting a particular crop, which, through a single pass, can do all of the following: dislocation the harvesting material, sorting, collecting and loading them directly into containers, transport trailers or in their own hoppers with automatic downloading capabilities

    SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers

    Get PDF
    S′adenosyl-l-methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during day/night cycles and found to fluctuate rhythmically between 10 and 50 nmol g−1 fresh weight. Troughs of SAM levels were measured in the evening and night, which corresponds to the time when the major floral scent compound, methyl benzoate, is synthesized by a SAM dependent methyltransferase (NsBSMT) and when this enzyme possesses its highest activity. The SAM synthetase (NsSAMS1) and methionine synthase (NsMS1) are enzymes, among others, which are involved in the synthesis and regeneration of SAM. Respective genes were isolated from a N. suaveolens petal cDNA library. Transcript accumulation patterns of both SAM regenerating enzymes matched perfectly those of the bifunctional NsBSMT; maximum mRNA accumulations of NsMS1 and NsSAMS1 were attained in the evening. Ethylene, which is synthesized from SAM, reached only low levels of 1–2 ppbv in N. suaveolens flowers. It is emitted in a burst at the end of the life span of the flowers, which correlates with the increased expression of the 1-aminocyclopropane-1-carboxylate oxidase (NsACO)

    Cost-effective scat-detection dogs: unleashing a powerful new tool for international mammalian conservation biology

    Get PDF
    Recently, detection dogs have been utilized to collect fecal samples from cryptic and rare mammals. Despite the great promise of this technique for conservation biology, its broader application has been limited by the high cost (tens to hundreds of thousands of dollars) and logistical challenges of employing a scat-detection dog team while conducting international, collaborative research. Through an international collaboration of primatologists and the Chinese Ministry of Public Security, we trained and used a detection dog to find scat from three species of unhabituated, free-ranging primates, for less than $3,000. We collected 137 non-human primate fecal samples that we confirmed by sequencing taxonomically informative genetic markers. Our detection dog team had a 92% accuracy rate, significantly outperforming our human-only team. Our results demonstrate that detection dogs can locate fecal samples from unhabituated primates with variable diets, locomotion, and grouping patterns, despite challenging field conditions. We provide a model for in-country training, while also building local capacity for conservation and genetic monitoring. Unlike previous efforts, our approach will allow for the wide adoption of scat-detection dogs in international conservation biology

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Online 222^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    Get PDF
    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ²²²Rn background originating from radon emanation. After inserting an auxiliary ²²²Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the ²²²Rn activity concentration inside the XENON100 detector

    Overview of the JET ITER-like wall divertor

    Get PDF
    corecore