756 research outputs found

    An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC

    Get PDF
    We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Rewetting offers rapid climate benefits for tropical and agricultural peatlands but not for forestry‐drained peatlands

    Get PDF
    Peat soils drained for agriculture and forestry are important sources of carbon dioxide and nitrous oxide. Rewetting effectively reduces these emissions. However, rewetting also increases methane emissions from the soil and, on forestry-drained peatlands, decreases the carbon storage of trees. To analyze the effect of peatland rewetting on the climate, we built radiative forcing scenarios for tropical peat soils, temperate and boreal agricultural peat soils, and temperate and boreal forestry-drained peat soils. The effect of tree and wood product carbon storage in boreal forestry-drained peatlands was also estimated as a case study for Finland. Rewetting of tropical peat soils resulted in immediate cooling. In temperate and boreal agricultural peat soils, the warming effect of methane emissions offsets a major part of the cooling for the first decades after rewetting. In temperate and boreal forestry-drained peat soils, the effect of rewetting was mostly warming for the first decades. In addition, the decrease in tree and wood product carbon storage further delayed the onset of the cooling effect for decades. Global rewetting resulted in increasing climate cooling, reaching -70 mW (m(2)Earth)(-1)in 100 years. Tropical peat soils (9.6 million ha) accounted for approximately two thirds and temperate and boreal agricultural peat soils (13.0 million ha) for one third of the cooling. Forestry-drained peat soils (10.6 million ha) had a negligible effect. We conclude that peatland rewetting is beneficial and important for mitigating climate change, but abandoning tree stands may instead be the best option concerning forestry-drained peatlands.Peer reviewe

    Analysis and quantification of the diversities of aerosol life cycles within AeroCom

    Get PDF
    Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO_4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO_4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO_4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO_4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by S_O4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO_4 and SS. It is the dominant sink for SO_4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and turbulent dry Deposition. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for a given species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO_4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times

    A PDRMIP multi-model study on the impacts of regional aerosol forcings on global and regional precipitation

    Get PDF
    Atmospheric aerosols such as sulfate and black carbon (BC) generate inhomogeneous radiative forcing and can affect precipitation in distinct ways compared to greenhouse gases (GHGs). Their regional effects on the atmospheric energy budget and circulation can be important for understanding and predicting global and regional precipitation changes, which act on top of the background GHG-induced hydrological changes. Under the framework of the Precipitation Driver Response Model Inter-comparison Project (PDRMIP), multiple models were used for the first time to simulate the influence of regional (Asian and European) sulfate and BC forcing on global and regional precipitation. The results show that, as in the case of global aerosol forcing, the global fast precipitation response to regional aerosol forcing scales with global atmospheric absorption, and the slow precipitation response scales with global surface temperature response. Asian sulphate aerosols appear to be a stronger driver of global temperature and precipitation change compared to European aerosols, but when the responses are normalised by unit radiative forcing or by aerosol burden change, the picture reverses, with European aerosols being more efficient in driving global change. The global apparent hydrological sensitivities of these regional forcing experiments are again consistent with those for corresponding global aerosol forcings found in the literature. However, the regional responses and regional apparent hydrological sensitivities do not align with the corresponding global values. Through a holistic approach involving analysis of the energy budget combined with exploring changes in atmospheric dynamics, we provide a framework for explaining the global and regional precipitation responses to regional aerosol forcing

    The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Get PDF
    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies
    corecore