169 research outputs found

    Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors

    Get PDF
    Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants

    Adult hippocampal neurogenesis as a target for cocaine addiction: a review of recent developments

    Get PDF
    Author manuscriptBasic research in rodents has shown that adult hippocampal neurogenesis (AHN) plays a key role in neuropsychiatric disorders that compromise hippocampal functioning. The discovery that dependence-inducing drugs regulate AHN has led to escalating interest in the potential involvement of AHN in drug addiction over the last decade, with cocaine being one of the most frequently investigated drugs. This review argues that, unlike other drugs of abuse, preclinical evidence does not, overall, support that cocaine induces a marked or persistent impairment in AHN. Nevertheless, experimental reduction of AHN consistently exacerbates vulnerability to cocaine. Interestingly, preliminary evidence suggests that, on the contrary, increasing AHN might help both to prevent and treat addiction.This study was funded by grants from the Spanish Ministry of Economy and Competitiveness (MINECO, Agencia Estatal de Investigación) cofounded by the European Regional Development Fund -AEI/FEDER, UE- (‘Jóvenes Investigadores grant’ PSI2015-73156-JIN to E.C.O.; and PSI2017-82604R to L.J.S.)

    Community recommendations on terminology and procedures used in flooding and low oxygen stress research

    Get PDF
    Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and temporal variations in O2 concentrations are important cues for plants to modulate development (van Dongen & Licausi, 2015; Considine et al., 2016). Environmental conditions can also expand the low O2 regions within the plant. For example, excessive rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-associated increases in precipitation events have made flooding a major abiotic stress threatening crop production and food sustainability. This increased flooding and associated crop losses highlight the urgency of understanding plant flooding responses and tolerance mechanisms. Timely manifestation of physiological and morphological changes triggering developmental adjustments or flooding survival strategies requires accurate sensing of O2 levels. Despite progress in understanding how plants sense and respond to changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several questions remain unanswered due to a lack of high resolution tools to accurately and noninvasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it is therefore critical for researchers in the field to be aware of how experimental conditions can influence plant O2 levels, and thus on the importance of accurately reporting specific experimental details. This also requires a consensus on the definition of frequently used terms. At the 15th New Phytologist Workshop on Flooding stress (Voesenek et al., 2016), community members discussed and agreed on unified nomenclature and standard norms for low O2 and flooding stress research. This consensus on terminology and experimental guidelines is presented here. We expect that these norms will facilitate more effective interpretation, comparison and reproducibility of research in this field. We also highlight the current challenges in noninvasively monitoring and measuring O2 concentrations in plant cells, outlining the technologies currently available, their strengths and drawbacks, and their suitability for use in flooding and low O2 research

    Tetrabenzoporphyrin and -mono-, - Cis -di- and tetrabenzotriazaporphyrin derivatives: Electrochemical and spectroscopic implications of meso CH Group replacement with nitrogen

    Get PDF
    Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, Îmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, âχR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds

    Dipeptidyl-peptidase 3 and IL-6: potential biomarkers for diagnostics in COVID-19 and association with pulmonary infiltrates

    Get PDF
    Coronavirus SARS-CoV-2 spread worldwide, causing a respiratory disease known as COVID-19. The aim of the present study was to examine whether Dipeptidyl-peptidase 3 (DPP3) and the inflammatory biomarkers IL-6, CRP, and leucocytes are associated with COVID-19 and able to predict the severity of pulmonary infiltrates in COVID-19 patients versus non-COVID-19 patients. 114 COVID-19 patients and 35 patients with respiratory infections other than SARS-CoV-2 were included in our prospective observational study. Blood samples were collected at presentation to the emergency department. 102 COVID-19 patients and 28 non-COVID-19 patients received CT imaging (19 outpatients did not receive CT imaging). If CT imaging was available, artificial intelligence software (CT Pneumonia Analysis) was used to quantify pulmonary infiltrates. According to the median of infiltrate (14.45%), patients who obtained quantitative CT analysis were divided into two groups (> median: 55 COVID-19 and nine non-COVID-19, ≤ median: 47 COVID-19 and 19 non-COVID-19). DPP3 was significantly elevated in COVID-19 patients (median 20.85 ng/ml, 95% CI 18.34–24.40 ng/ml), as opposed to those without SARS-CoV-2 (median 13.80 ng/ml, 95% CI 11.30–17.65 ng/ml; p < 0.001, AUC = 0.72), opposite to IL-6, CRP (each p = n.s.) and leucocytes (p < 0.05, but lower levels in COVID-19 patients). Regarding binary logistic regression analysis, higher DPP3 concentrations (OR = 1.12, p < 0.001) and lower leucocytes counts (OR = 0.76, p < 0.001) were identified as significant and independent predictors of SARS-CoV-2 infection, as opposed to IL-6 and CRP (each p = n.s.). IL-6 was significantly increased in patients with infiltrate above the median compared to infiltrate below the median both in COVID-19 (p < 0.001, AUC = 0.78) and in non-COVID-19 (p < 0.05, AUC = 0.81). CRP, DPP3, and leucocytes were increased in COVID-19 patients with infiltrate above median (each p < 0.05, AUC: CRP 0.82, DPP3 0.70, leucocytes 0.67) compared to infiltrate below median, opposite to non-COVID-19 (each p = n.s.). Regarding multiple linear regression analysis in COVID-19, CRP, IL-6, and leucocytes (each p < 0.05) were associated with the degree of pulmonary infiltrates, as opposed to DPP3 (p = n.s.). DPP3 showed the potential to be a COVID-19-specific biomarker. IL-6 might serve as a prognostic marker to assess the extent of pulmonary infiltrates in respiratory patients

    Decreased GLUT1/NHE1 RNA expression in whole blood predicts disease severity in patients with COVID‐19

    Get PDF
    Aims We aimed to assess whether expression of whole‐blood RNA of sodium proton exchanger 1 (NHE1) and glucose transporter 1 (GLUT1) is associated with COVID‐19 infection and outcome in patients presenting to the emergency department with respiratory infections. Furthermore, we investigated NHE1 and GLUT1 expression in the myocardium of deceased COVID‐19 patients. Methods and results Whole‐blood quantitative assessment of NHE1 and GLUT1 RNA was performed using quantitative PCR in patients with respiratory infection upon first contact in the emergency department and subsequently stratified by SARS‐CoV‐2 infection status. Assessment of NHE1 and GLUT1 RNA using PCR was also performed in left ventricular myocardium of deceased COVID‐19 patients. NHE1 expression is up‐regulated in whole blood of patients with COVID‐19 compared with other respiratory infections at first medical contact in the emergency department (control: 0.0021 ± 0.0002, COVID‐19: 0.0031 ± 0.0003, P = 0.01). The ratio of GLUT1 to NHE1 is significantly decreased in the blood of COVID‐19 patients who are subsequently intubated and/or die (severe disease) compared with patients with moderate disease (moderate disease: 0.497 ± 0.083 vs. severe disease: 0.294 ± 0.0336, P = 0.036). This ratio is even further decreased in the myocardium of patients who deceased from COVID‐19 in comparison with the myocardium of non‐infected donors. Conclusions NHE1 and GLUT1 may be critically involved in the disease progression of SARS‐CoV‐2 infection. We show here that SARS‐CoV‐2 infection critically disturbs ion channel expression in the heart. A decreased ratio of GLUT1/NHE1 could potentially serve as a biomarker for disease severity in patients with COVID‐19

    Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels

    Get PDF
    Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity

    Enhanced Heart Failure in Redox‐Dead Cys17Ser PKARIα Knock‐In Mice

    Get PDF
    Background PKARIα (protein kinase A type I‐α regulatory subunit) is redox‐active independent of its physiologic agonist cAMP. However, it is unknown whether this alternative mechanism of PKARIα activation may be of relevance to cardiac excitation–contraction coupling. Methods and Results We used a redox‐dead transgenic mouse model with homozygous knock‐in replacement of redox‐sensitive cysteine 17 with serine within the regulatory subunits of PKARIα (KI). Reactive oxygen species were acutely evoked by exposure of isolated cardiac myocytes to AngII (angiotensin II, 1 µmol/L). The long‐term relevance of oxidized PKARIα was investigated in KI mice and their wild‐type (WT) littermates following transverse aortic constriction (TAC). AngII increased reactive oxygen species in both groups but with RIα dimer formation in WT only. AngII induced translocation of PKARI to the cell membrane and resulted in protein kinase A–dependent stimulation of ICa (L‐type Ca current) in WT with no effect in KI myocytes. Consequently, Ca transients were reduced in KI myocytes as compared with WT cells following acute AngII exposure. Transverse aortic constriction–related reactive oxygen species formation resulted in RIα oxidation in WT but not in KI mice. Within 6 weeks after TAC, KI mice showed an enhanced deterioration of contractile function and impaired survival compared with WT. In accordance, compared with WT, ventricular myocytes from failing KI mice displayed significantly reduced Ca transient amplitudes and lack of ICa stimulation. Conversely, direct pharmacological stimulation of ICa using Bay K8644 rescued Ca transients in AngII‐treated KI myocytes and contractile function in failing KI mice in vivo. Conclusions Oxidative activation of PKARIα with subsequent stimulation of ICa preserves cardiac function in the setting of acute and chronic oxidative stress
    corecore