1,092 research outputs found

    Microquasars as sources of positron annihilation radiation

    Get PDF
    We consider the production of positrons in microquasars, i.e. X-ray binary systems that exhibit jets frequently, but not continuously. We estimate the production rate of positrons in microquasars, both by simple energy considerations and in the framework of various proposed models. We then evaluate the collective emissivity of the annihilation radiation produced by Galactic microquasars and we find that it might constitute a substantial contribution to the annihilation flux measured by INTEGRAL/SPI. We also discuss the possible spatial distribution of Galactic microquasars, on the basis of the (scarce) available data and the resulting morphology of the flux received on Earth. Finally, we consider nearby 'misaligned' microquasars, with jets occasionally hitting the atmosphere of the companion star; these would represent interesting point sources, for which we determine the annihilation flux and the corresponding light curve, as well as the line's spectral profile. We discuss the possibility of detection of such point sources by future instruments.Comment: 13 pages, 7 figures, accepted in A&

    Fokker-Planck Models for M15 without a Central Black Hole: The Role of the Mass Function

    Full text link
    We have developed a set of dynamically evolving Fokker-Planck models for the collapsed-core globular star cluster M15, which directly address the issue of whether a central black hole is required to fit Hubble Space Telescope (HST) observations of the stellar spatial distribution and kinematics. As in our previous work reported by Dull et al., we find that a central black hole is not needed. Using local mass-function data from HST studies, we have also inferred the global initial stellar mass function. As a consequence of extreme mass segregation, the local mass functions differs from the global mass function at every location. In addition to reproducing the observed mass functions, the models also provide good fits to the star-count and velocity-dispersion profiles, and to the millisecond pulsar accelerations. We address concerns about the large neutron star populations adopted in our previous Fokker-Planck models for M15. We find that good model fits can be obtained with as few as 1600 neutron stars; this corresponds to a retention fraction of 5% of the initial population for our best fit initial mass function. The models contain a substantial population of massive white dwarfs, that range in mass up to 1.2 solar masses. The combined contribution by the massive white dwarfs and neutron stars provides the gravitational potential needed to reproduce HST measurements of the central velocity dispersion profile.Comment: 10 pages, 7 figure

    "It's a can of worms": understanding primary care practitioners' behaviours in relation to HPV using the Theoretical Domains Framework

    Get PDF
    Background: The relationship between infection with high-risk human papillomavirus (HPV) and cervical cancer is transforming cervical cancer prevention. HPV tests and vaccinations have recently become available. In Ireland, as elsewhere, primary care practitioners play a key role in prevention. ATHENS (A Trial of HPV Education and Support) aims to develop a theorybased intervention to support primary care practitioners in their HPV-related practice. This study, the first step in the intervention development process, aimed to: identify HPV-related clinical behaviours that the intervention will target; clarify general practitioners’ (GPs’) and practice nurses’ roles and responsibilities; and determine factors that potentially influence clinical behaviour. A secondary objective was to informally assess the utility of the Theoretical Domains Framework (TDF) in understanding clinical behaviours in an area with an evolving evidence-base. Methods: In-depth semi-structured telephone interviews were conducted with GPs and practice nurses. The topic guide, which contained open questions and HPV-related clinical scenarios, was developed through literature review and clinical experience. Interview transcripts were content-analysed using the TDF as the coding framework. Results: 19 GPs and 14 practice nurses were interviewed. The major HPV-related clinical behaviours were: initiating a discussion about HPV infection with female patients; offering/recommending HPV vaccination to appropriate patients; and answering patients’ questions about HPV testing. While the responsibility for taking smears was considered a female role, both male and female practitioners dealt with HPV-related issues. All 12 theoretical domains arose in relation to HPV infection; the domains judged to be most important were: knowledge, emotion, social influences, beliefs about capabilities and beliefs about consequences. Eleven domains emerged in relation to HPV vaccination, with beliefs about consequences, social influences, knowledge and environmental context and resources judged to be the most important. Nine domains were relevant to HPV testing, with knowledge and beliefs about capabilities judged to be the most important. Conclusions: The findings confirm the need for an intervention to support primary care practitioners around HPV and suggest it should target a range of theoretical domains. The TDF proved valuable in analysing qualitative data collected using a topic guide not specifically designed to capture TDF domains and understanding clinical behaviours in an area with an evolving evidence-base

    A kinematically distinct core and minor-axis rotation : the MUSE perspective on M87

    Get PDF
    Date of Acceptance: 22/08/2014We present evidence for the presence of a low-amplitude kinematically distinct component in the giant early-type galaxy M87, via data sets obtained with the SAURON and MUSE integral-field spectroscopic units. The MUSE velocity field reveals a strong twist of ∌140° within the central 30 arcsec connecting outwards such a kinematically distinct core to a prolate-like rotation around the large-scale photometric major axis of the galaxy. The existence of these kinematic features within the apparently round central regions of M87 implies a non-axisymmetric and complex shape for this galaxy, which could be further constrained using the presented kinematics. The associated orbital structure should be interpreted together with other tracers of the gravitational potential probed at larger scales (e.g. globular clusters, ultra-compact dwarfs, planetary nebulae): it would offer an insight in the assembly history of one of the brightest galaxies in the Virgo cluster. These data also demonstrate the potential of the MUSE spectrograph to uncover low-amplitude spectral signaturesPeer reviewedFinal Accepted Versio

    Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    Full text link
    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high resolution integral field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although 2/7 galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, gamma, are generally robust. The mean and standard deviation of the logarithmic slope for the population are gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when measured in the gas. We also find that the halos are not under concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. We investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. Determining the importance of these correlations will require further model developments and larger observational samples. (Abridged)Comment: 29 pages, 18 figures, 10 tables, accepted for publication in Ap

    PSFs of coadded images

    Full text link
    We provide a detailed exploration of the connection between choice of coaddition schemes and the point-spread function (PSF) of the resulting coadded images. In particular, we investigate what properties of the coaddition algorithm lead to the final coadded image having a well-defined PSF. The key elements of this discussion are as follows: 1. We provide an illustration of how linear coaddition schemes can produce a coadd that lacks a well-defined PSF even for relatively simple scenarios and choices of weight functions. 2. We provide a more formal demonstration of the fact that a linear coadd only has a well-defined PSF in the case that either (a) each input image has the same PSF or (b) the coadd is produced with weights that are independent of the signal. 3. We discuss some reasons that two plausible nonlinear coaddition algorithms (median and clipped-mean) fail to produce a consistent PSF profile for stars. 4. We demonstrate that all nonlinear coaddition procedures fail to produce a well-defined PSF for extended objects. In the end, we conclude that, for any purpose where a well-defined PSF is desired, one should use a linear coaddition scheme with weights that do not correlate with the signal and are approximately uniform across typical objects of interest.Comment: 13 pages, 4 figures; pedagogical article for submission to the Open Journal of Astrophysic

    An autopsy study of a familial oculopharyngeal muscular dystrophy (OPMD) with distal spread and neurogenic involvement

    Get PDF
    An 81-year-old man from a family with a history of oculopharyngeal muscular dystrophy (OPMD) involving 6 members over 4 generations is described. The patient first noted drooping of his eyelids at the age of 65. Dysphagia and dysarthria occurred soon thereafter. At age 78, impairment of gait developed and progressive wasting occurred in the limbs with an initial distal distribution. Electromyography of several limb muscles displayed a mixed myopathic and neurogenic pattern with giant potentials. Examination at autopsy revealed slight loss of neurons in the anterior horns of the spinal cord, with scanty ghost cells, neuronophagia, and central chromatolysis. By light microscopy the limb muscles showed moderate small-group atrophy with severe myopathy and target fibers. The viscerocranial muscles, including the ocular, vocal, and tongue muscles, demonstrated only myopathic change with the typical features of progressive muscular dystrophy. Advanced replacement by fibrous connective tissue and fat had occurred in both the viscerocranial and the lower limb muscles. The significance of neurogenic involvement in OPMD is discussed

    Do High-Velocity Clouds trace the Dark Matter subhalo population?

    Full text link
    Within the cosmological concordance model, Cold Dark Matter (CDM) subhalos form the building blocks which merge hierarchically to more massive galaxies. Since intergalactic gas is accreted by massive galaxies, observable e.g. as high- velocity clouds (HVCs) around the Milky Way, with extremely low metallicities, these can be suggested to represent the baryonic content of primordial Dark Matter (DM) subhalos. Another possibility of their origin is that they stem from disrupted satellite galaxies, but in this case, these gas clouds move unaccompanied by a bound DM structure. Since HVCs are observed with long gas tails and with irregular substructures, numerical models are performed aiming at exploring their structure and compare them with observations. If HVCs are engulfed by DM subhalos, their gas must leave the DM gravitational potential and reflect this in their dynamics. On the other hand, the evolution and survival of pure gas models must be tested to distinguish between DM-dominated and DM-free clouds and to allow conclusions on their origin. The models demonstrate that purely baryonic HVCs with low masses are disrupted by ram-pressure stripping and Kelvin-Helmholtz instabilities, while more massive ones survive, losing their initially spherical shape and develop significant substructures including cometary elongations in the column density distribution ("head-tail structure"). On the contrary, HVCs with DM subhalos survive with more than 90% of their gas mass still bound and spherically shaped, approaching the Galactic disk like bullets. In addition, we find that velocity gradients along the cometary head-tail structures does not necessarily offer a possibility to distinguish between DM-dominated and purely gaseous HVCs. Comparison of models with observations let us conclude that HVCs are not embedded in a DM substructure and do not trace the cosmological subhalo population.Comment: Accepted for publication in A&
    • 

    corecore