1,260 research outputs found

    Phase-Field Model of Silicon Carbide Growth During Isothermal Condition

    Full text link
    Silicon carbide (SiC) emerges as a promising ceramic material for high-temperature structural applications, especially within the aerospace sector. The utilization of SiC-based ceramic matrix composites (CMCs) instead of superalloys in components like engine shrouds, combustors, and nozzles offers notable advantages, including a 25% improvement in fuel efficiency, over 10% enhanced thrust, and the capability to withstand up to 500^{\circ}C higher operating temperatures. Employing a CALPHAD-reinforced multi-phase-field model, our study delves into the evolution of the SiC layer under isothermal solidification conditions. By modeling the growth of SiC between liquid Si and solid C at 1450^{\circ}C, we compared results with experimental microstructures and quantitatively examined the evolution of SiC thickness over time. Efficient sampling across the entire model space mitigated uncertainty in high-temperature kinetic parameters, allowing us to predict a range of growth rates and morphologies for the SiC layer. The model accounts for parameter uncertainty stemming from limited experimental knowledge and successfully predicts relevant morphologies for the system. Experimental results validated the kinetic parameters of the simulations, offering valuable insights and potential constraints on the reaction kinetics. We further explored the significance of multi-phase-field model parameters on two key outputs, and found that the diffusion coefficient of liquid Si emerges as the most crucial parameter significantly impacting the SiC average layer thickness and grain count over time. This study provides valuable insights into the microstructure evolution of the Si-C binary system, offering pertinent information for the engineering of CMCs in industrial applications

    Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction

    Get PDF
    To evaluate the feasibility of detecting denervated myocardium in the infarcted canine heart, the distribution of sympathetic nerve endings using 1–123 metaiodobenzylguanidine (MIBG) was compared with the distribution of perfusion using thallium-201, with the aid of color-coded computer functional map in 16 dogs. Twelve dogs underwent myocardial infarction by injection of vinyl latex into the left anterior descending coronary artery (transmural myocardial infarction, n = 6), or ligation of the left anterior descending coronary artery (nontransmural myocardial infarction, n = 6). Four dogs served as sham-operated controls. Image patterns were compared with tissue norepinephrine content and with histofluorescence microscopic findings in biopsy specimens.Hearts with transmural infarction showed zones of absent MIBG and thallium, indicating scar. Adjacent and distal regions showed reduced MIBG but normal thallium uptake, indicating viable but denervated myocardium. Denervation distal to infarction was confirmed by reduced norepinephrine content and absence of nerve fluorescence. Nontransmural myocardial infarction showed zones of wall thinning with decreased thallium uptake and a greater reduction or absence of MIBG localized to the region of the infarct, with minimal extension of denervation beyond the infarct. Norepinephrine content was significantly reduced in the infarct zone, and nerve fluorescence was absent.These findings suggest that 1) MIBG imaging can detect viable and perfused but denervated myocardium after infarction; and 2) as opposed to the distal denervation produced by transmural infarction, nontransmural infarction may lead to regional ischemic damage of sympathetic nerves, but may spare subepicardial nerve trunks that course through the region of infarction to provide a source of innervation to distal areas of myocardium

    Simultaneous Analysis of Multiple Mycobacterium tuberculosis Knockdown Mutants In Vitro and In Vivo

    Get PDF
    Mycobacterium tuberculosis (Mtb) represents one of the most persistent bacterial threats to human health and new drugs are needed to limit its impact. Conditional knockdown mutants can help validate new drug targets, but the analysis of individual mutants is laborious and time consuming. Here, we describe quantitative DNA tags (qTags) and their use to simultaneously analyze conditional Mtb knockdown mutants that allowed silencing the glyoxylate and methylcitrate cycles (via depletion of isocitrate lyase, ICL), the serine protease Rv3671c, and the core subunits of the mycobacterial proteasome, PrcB and PrcA. The impact of gene silencing in multi-strain cultures was determined by measuring the relative abundance of mutant-specific qTags with real-time PCR. This achieved accurate quantification over a broad range of qTag abundances and depletion of ICL, Rv3671c, or PrcBA resulted in the expected impairment of growth of Mtb with butyrate as the primary carbon source, survival during oxidative stress, acid stress and starvation. The impact of depleting ICL, Rv3671c, or PrcBA in multi-strain mouse infections was analyzed with two approaches. We first measured the relative abundance of mutant-specific qTags in total chromosomal DNA isolated from bacteria that were recovered from infected lungs on agar plates. We then developed a two-step amplification procedure, which allowed us to measure the abundances of individual mutants directly in infected lung tissue. Both strategies confirmed that inactivation of Rv3671c and PrcBA severely reduced persistence of Mtb in mice. The multi-strain infections furthermore suggested that silencing ICL not only prevented growth of Mtb during acute infections but also prevented survival of Mtb during chronic infections. Analyses of the ICL knockdown mutant in single-strain infections confirmed this and demonstrated that silencing of ICL during chronic infections impaired persistence of Mtb to the extent that the pathogen was cleared from the lungs of most mice

    DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection

    Get PDF
    Mycobacteria, including most of all MTB (Mycobacterium tuberculosis), cause pathogenic infections in humans and, during the infectious process, are exposed to a range of environmental insults, including the host's immune response. From the moment MTB is exhaled by infected individuals, through an active and latent phase in the body of the new host, until the time they reach the reactivation stage, MTB is exposed to many types of DNA-damaging agents. Like all cellular organisms, MTB has efficient DNA repair systems, and these are believed to play essential roles in mycobacterial pathogenesis. As different stages of infection have great variation in the conditions in which mycobacteria reside, it is possible that different repair systems are essential for progression to specific phases of infection. MTB possesses homologues of DNA repair systems that are found widely in other species of bacteria, such as nucleotide excision repair, base excision repair and repair by homologous recombination. MTB also possesses a system for non-homologous end-joining of DNA breaks, which appears to be widespread in prokaryotes, although its presence is sporadic within different species within a genus. However, MTB does not possess homologues of the typical mismatch repair system that is found in most bacteria. Recent studies have demonstrated that DNA repair genes are expressed differentially at each stage of infection. In the present review, we focus on different DNA repair systems from mycobacteria and identify questions that remain in our understanding of how these systems have an impact upon the infection processes of these important pathogens

    The impact of glucocorticoids and anti-cd20 therapy on cervical human papillomavirus infection risk in women with systemic lupus erythematosus

    Get PDF
    OBJECTIVE: To identify the prevalence and factors associated with cervical human papillomavirus infection in women with systemic lupus erythematosus METHODS: This cross-sectional study collected traditional and systemic lupus erythematosus-related disease risk factors, including conventional and biologic therapies. A gynecological evaluation and cervical cytology screen were performed. Human papillomavirus detection and genotyping were undertaken by PCR and linear array assay. RESULTS: A total of 148 patients were included, with a mean age and disease duration of 42.5±11.8 years and 9.7±5.3 years, respectively. The prevalence of squamous intraepithelial lesions was 6.8%. The prevalence of human papillomavirus infection was 29%, with human papillomavirus subtype 59 being the most frequent. Patients with human papillomavirus were younger than those without the infection (38.2±11.2 vs. 44.2±11.5 years, respectively; p = 0.05), and patients with the virus had higher daily prednisone doses (12.8±6.8 vs. 9.7±6.7 mg, respectively; p = 0.01) and cumulative glucocorticoid doses (14.2±9.8 vs. 9.7±7.3 g, respectively; p = 0.005) compared with patients without. Patients with human papillomavirus infection more frequently received rituximab than those without (20.9% vs. 8.5%, respectively; p = 0.03). In the multivariate analysis, only the cumulative glucocorticoid dose was associated with human papillomavirus infection. CONCLUSIONS: The cumulative glucocorticoid dose may increase the risk of human papillomavirus infection. Although rituximab administration was more frequent in patients with human papillomavirus infection, no association was found. Screening for human papillomavirus infection is recommended in women with systemic lupus erythematosus

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy

    Get PDF
    Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine–imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
    corecore