58 research outputs found

    Influence of tropical supplemental feeds on the composition and activity of rumen microorganisms, quantified by oligonucleotide probes

    Get PDF
    Zunächst wurde eine RNA-Extraktionsmethode und Aufschluss der Bakterien optimiert. Das Extraktions-Protokoll ist jedoch nicht anwendbar, wenn tanninhaltige Pflanzen in den Proben enthalten sind. Verglichen mit dem Inokulum aus der flüssigen Phase des Pansens führte die Inkubation von Substraten mit Inokulum aus der Futtermittelmatte unabhängig vom inkubierten Substrat zu einer höheren Gasproduktion, die nicht über eine höhere Verdaulichkeit erklärt werden konnte. Änderungen in der Populationsdichte, der Populationsstruktur und der veränderten Kinetik der Fermentation sind vermutlich verantwortlich für diese Beobachtungen. Dieses Experiment zeigte jedoch vor allem, dass zur Interpretation von Unterschieden in der Populationsstruktur die Quantifizierung metabolischer Aktivitäten unerlässlich ist. In einem Zulageexperiment konnte gezeigt werden, dass die eine Supplementierung vor allem die absolute Menge aber auch die Effizienz der mikrobiellen Biomasse Produktion im Pansen erhöht. Der Vergleich der Populationsstruktur der zellwandabbauenden Mikroorganismen mit der Zellulaseaktivität während der in-vitro-Inkubation zeigte, dass vor allem der Genus Fibrobacter für die Expression dieser Enzymaktivität verantwortlich ist. Ein solcher Ansatz, der die Kinetik enzymatischer Aktivitäten und der Populationsstruktur zueinander in Beziehung setzt, ist geeignet die komplexen Vorgänge und Interaktionen im Pansen besser zu verstehen. Eine Analyse der Populationsstruktur der zellwandabbauenden Mikroorganismen in vitro zeigte dann, dass in vitro eine Konkurrenz zwischen Fibrobacter und Ruminococcus albus eine Konkurrenz unabhängig vom inkubierten Substrat, des Zeitpunkts während der Fermentation und der Herkunft des Inokulums besteht.This study was undertaken to evaluate the applicability of oligonucleotide probes to unravel the population structure of the rumen flora in vitro. At first a RNA extraction and cell lysis method for rumen fluid samples was optimised. However when tannin containing plants were present in the samples the method failed to recover microbial RNA. The comparison of two rumen fluid sampling sites for inoculation revealed a higher in vitro gas production from samples inoculated with rumen fluid from the feed mat compared to the liquid phase. The higher gas production was not explained by a higher digestibility of the substrates. Changes in the population structure, population density and the kinetic of the fermentation might be responsible for the observed differences. This experiment showed that for interpretation of the results, population structure data have to complemented with metabolic parameters. In a supplementation experiment it was demonstrated that amount, but also the efficiency of the microbial biomass production was positively affected. Comparison of the population structure of the cell wall degrading consortium and cellulase activity revealed that Fibrobacter was mainly responsible for the expression of this enzymatic activity. Such a comparison is a new strategy which will lead to a better understanding of the complex fermentation processes in the rumen. The analysis of the population structure of the cell wall degrading organisms showed a competition for substrate or attachment sites between Fibrobacter and Ruminococcus albus which was independent of the substrate incubated, the time of sampling and the origin of the inoculum

    Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    Get PDF
    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations

    Naturally produced lovastatin modifies the histology and proteome profile of goat skeletal muscle

    Get PDF
    Enteric methane formation in ruminants is one of the major contributors to climate change. We have reported that supplementation of naturally produced lovastatin reduced methane emissions in goats without adversely affecting rumen fermentation and animal performance, except that at higher level, lovastatin can have a negative effect on the palatability of the formulated diet. As statins are associated with the development of muscle-related adverse effects at higher than recommended therapeutic doses, this study was conducted to examine the effects of lovastatin on the histology and proteome profile of goat skeletal muscle. A total of 20 intact male Saanen goats were randomly assigned in equal numbers to 4 groups, and fed with a total mixed ration containing 50% rice straw, 22.8% concentrates and 27.2% of various proportions of untreated or treated palm kernel cake (PKC) to achieve the target daily intake levels of 0 (Control), 2 (Low), 4 (Medium) or 6 (High) mg lovastatin/kg body weight (BW). Histological examination discovered that the longissimus thoracis et lumborum muscle of animals from the Medium and High treatment groups showed abnormalities in terms of necrosis, degeneration, interstitial space and vacuolation. Western blot analysis conducted on the myosin heavy chain showed that the immunoreactivity of myosin heavy chain in the High treatment group was significantly lower than the Control, Low and Medium treatment groups. Comparisons between control and lovastatin-treated groups demonstrated that lovastatin supplementation induced complex modifications to the protein expression patterns of the longissimus thoracis et lumborum muscle of the goat. There were 30, 26 and 24 proteins differentially expressed in Low, Medium and High treatment groups respectively, when compared to the Control group. Supplementation of lovastatin down-regulated proteins involved in carbohydrate and creatine metabolism, indicative of reduced energy production, and may have contributed to the skeletal muscle damage. Supplementation of naturally produced lovastatin induced muscle damage in longissimus thoracis et lumborum muscle of goats with increasing dosages, particularly at 6mg/kg BW. In addition, proteomics analysis revealed that lovastatin supplementation induced complex modifications to the protein expressions of skeletal muscle of goats which may have contributed to the observed skeletal muscle damage. Present study suggested that supplementation of naturally-produced lovastatin at 6mg/kg BW could adversely affecting health and wellbeing of the animals

    Condensed Tannins in White Clover (Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro

    Get PDF
    Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p <= 0.01) and ammonia production by 60% (p <= 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo

    Fish Oil Increases the Duodenal Flow of Long Chain Polyunsaturated Fatty Acids and trans-11 18:1 and Decreases 18:0 in Steers via Changes in the Rumen Bacterial Community

    Get PDF
    Ruminant fat is rich in SFA, partly due to the biohydrogenation of dietary PUFA to SFA in the rumen. This process can be inhibited by the dietary inclusion of fish oil. The only bacteria isolated from the rumen capable of converting PUFA to SFA are closely related to Clostridium proteoclasticum. The aim of this study was to investigate if a correlation could be found in vivo between dietary fish oil inclusions and the composition of the ruminal bacterial community and specifically of C. proteoclasticum. Six Hereford × Friesian steers, prepared with ruminal and duodenal cannulae, received grass silage plus 1 of 3 concentrates resulting in total dietary fish oil contents of 0, 1, or 3% of dry matter. A dual flow marker technique was employed to estimate the relative flow of fatty acids. Steers fed the 3% fish oil diet had 100% increases in trans 18:1 flow, whereas 18:0 flow declined to 39% of steers fed the control diet. 16S ribosomal RNA-based denaturing gradient gel electrophoresis profiles obtained from ruminal digesta showed major changes in the bacterial community within steers fed the 3% fish oil diet. Quantitative PCR indicated only a weak relation between numbers of C. proteoclasticum and 18:0 flow between treatments and in individual steers (P < 0.05, but the percentage variance accounted for only 22.8) and did not provide unambiguous evidence that numbers of C. proteoclasticum in the rumen dictate the ratios of SFA:PUFA available for absorption by the animal. Understanding which microbes biohydrogenate PUFA in the rumen is key to developing novel strategies to improve the quality of ruminant products

    Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period

    Get PDF
    Twenty male Saanen goats were randomly assigned to four levels of lovastatin supplementation and used to determine the optimal dosage and sustainability of naturally produced lovastatin from fermentation of palm kernel cake (PKC) with Aspergillus terreus on enteric methane (CH4) mitigation. The effects on ruminal microbiota, rumen fermentation, feed digestibility and health of animal were determined over three measuring periods (4-, 8- and 12-weeks) and the accumulation of lovastatin in tissues was determined at the end of the experiment. The diets contained 50% rice straw, 22.8% concentrates and 27.2% of various proportions of untreated or treated PKC to achieve the target daily intake level of 0 (Control), 2, 4 or 6 mg lovastatin/kg body weight (BW). Enteric CH4 emissions per dry matter intake (DMI), decreased significantly (P<0.05) and equivalent to 11% and 20.4%, respectively, for the 2 and 4 mg/kg BW groups as compared to the Control. No further decrease in CH4 emission thereafter with higher lovastatin supplementation. Lovastatin had no effect on feed digestibility and minor effect on rumen microbiota, and specifically did not reduce the populations of total methanogens and Methanobacteriales (responsible for CH4 production). Similarly, lovastatin had little effect on rumen fermentation characteristics except that the proportion of propionate increased, which led to a decreasing trend (P<0.08) in acetic: propionate ratio with increasing dosage of lovastatin. This suggests a shift in rumen fermentation pathway to favor propionate production which serves as H+ sink, partly explaining the observed CH4 reduction. No adverse physiological effects were noted in the animals except that treated PKC (containing lovastatin) was less palatable at the highest inclusion level. Lovastatin residues were detected in tissues of goats fed 6 mg lovastatin/kg BW at between 0.01 to 0.03 μg/g, which are very low

    Prediction of enteric methane production, yield and intensity in dairy cattle using an intercontinental database

    Get PDF
    Enteric methane (CH4) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/d per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the US (US), Chile (CL), Australia (AU), and New Zealand (NZ). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6, 14.4, and 19.8% for intercontinental, EU, and US regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary NDF concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation

    Symposium review: uncertainties in enteric methane inventories,measurement techniques, and prediction models

    Get PDF
    Ruminant production systems are important contributors to anthropogenic methane (CH4) emissions, but there are large uncertainties in national and global livestock CH4 inventories. Sources of uncertainty in enteric CH4 emissions include animal inventories, feed dry matter intake (DMI), ingredient and chemical composition of the diets, and CH4 emission factors. There is also significant uncertainty associated with enteric CH4 measurements. The most widely used techniques are respiration chambers, the sulfur hexafluoride (SF6) tracer technique, and the automated head-chamber system (GreenFeed; C-Lock Inc., Rapid City, SD). All 3 methods have been successfully used in a large number of experiments with dairy or beef cattle in various environmental conditions, although studies that compare techniques have reported inconsistent results. Although different types of models have been developed to predict enteric CH4 emissions, relatively simple empirical (statistical) models have been commonly used for inventory purposes because of their broad applicability and ease of use compared with more detailed empirical and process-based mechanistic models. However, extant empirical models used to predict enteric CH4 emissions suffer from narrow spatial focus, limited observations, and limitations of the statistical technique used. Therefore, prediction models must be developed from robust data sets that can only be generated through collaboration of scientists across the world. To achieve high prediction accuracy, these data sets should encompass a wide range of diets and production systems within regions and globally. Overall, enteric CH4 prediction models are based on various animal or feed characteristic inputs but are dominated by DMI in one form or another. As a result, accurate prediction of DMI is essential for accurate prediction of livestock CH4 emissions. Analysis of a large data set of individual dairy cattle data showed that simplified enteric CH4 prediction models based on DMI alone or DMI and limited feed- or animal-related inputs can predict average CH4 emission with a similar accuracy to more complex empirical models. These simplified models can be reliably used for emission inventory purposes

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    EFFECT OF LERAK (SAPINDUS RARAK) EXTRACT IN HIGH ROUGHAGE DIET ON RUMEN MICROBIAL PROTEIN SYNTHESIS AND PERFORMANCE OF SHEEP

    Get PDF
    Secondary compounds containing plant extract as feed additive may improve the performance of livestock consuming high roughage diet. An in vivo trial was conducted to investigate the effect of Sapindus rarak extract (SRE) on ruminal fermentation products, microbial protein synthesis, and growth performance of sheep. Sheep (male, 28 heads) fed high roughage diet were arranged in a completely randomized design with four treatments: addition of SRE to the diet at 0, 4, 8 and 12 g head-1 day-1. The experiment was conducted for 105 days with 2 weeks adaptation period. At the end of the experiment, total faeces was collected for 1 week and rumen liquor was taken. Variables measured were ruminal fermentation products, microbial protein synthesis, daily intake, digestibility, N retention, body weight, and average daily gain. Protozoal numbers were significantly decreased with increasing SRE dose. The ruminal NH3 concentration tended to reduce by SRE addition (P = 0.06). SRE significantly increased propionate and efficiency of microbial protein synthesis from 6.4 to 10.5 g N kg-1 DOMR. SRE significantly improved average daily gain of sheep during the first 70 days of experiment without affecting intake and digestibility. SRE did not alter carcass percentage but tended to lower pancreas and liver weights (P&lt;0.1). In conclusion, SRE has a significant role in partially defaunated rumen microflora, hence, increased microbial protein synthesis and propionate production in the rumen. Addition of SRE is useful to increase daily gain of sheep fed high roughage diet in 70 days of feeding
    corecore