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Abstract

Ruminant fat is rich in SFA, partly due to the biohydrogenation of dietary PUFA to SFA in the rumen. This process can be

inhibited by the dietary inclusion of fish oil. The only bacteria isolated from the rumen capable of converting PUFA to SFA

are closely related to Clostridium proteoclasticum. The aim of this study was to investigate if a correlation could be found in

vivo between dietary fish oil inclusions and the composition of the ruminal bacterial community and specifically of

C. proteoclasticum. Six Hereford 3 Friesian steers, prepared with ruminal and duodenal cannulae, received grass silage

plus 1 of 3 concentrates resulting in total dietary fish oil contents of 0, 1, or 3% of dry matter. A dual flow marker technique

was employed to estimate the relative flow of fatty acids. Steers fed the 3% fish oil diet had 100% increases in trans 18:1

flow, whereas 18:0 flow declined to 39% of steers fed the control diet. 16S ribosomal RNA-based denaturing gradient gel

electrophoresis profiles obtained from ruminal digesta showed major changes in the bacterial community within steers fed

the 3% fish oil diet. Quantitative PCR indicated only a weak relation between numbers of C. proteoclasticum and 18:0 flow

between treatments and in individual steers (P , 0.05, but the percentage variance accounted for only 22.8) and did not

provide unambiguous evidence that numbers of C. proteoclasticum in the rumen dictate the ratios of SFA:PUFA available

for absorption by the animal. Understanding which microbes biohydrogenate PUFA in the rumen is key to developing novel

strategies to improve the quality of ruminant products. J. Nutr. 138: 889–896, 2008.

Introduction

Recent nutritional advice has emphasized the need to decrease
intake of SFA and increase intakes of beneficial PUFA, in partic-
ular a-linolenic acid [18:3(n-3)] and the longer chain (n-3) PUFA
[20:5(n-3) and 22:6(n-3)], in the diet (1). Ruminant products make
an important contribution to the human diet but have caused
concern due to their enriched SFA content (2). This is largely due
to microbial biohydrogenation of dietary unsaturated fatty acids
in the rumen, although some intermediates of biohydrogenation
such as conjugated linolenic acid (cis-9, trans-11 CLA)7 and

trans-11 18:1 could be important in human health (3). Previous
studies have shown that including fish oil in the diet of beef
cattle resulted in increased long chain (longer than 20 C) PUFA
(LCPUFA) in muscle resulting in a lower (n-6):(n-3) fatty acid
ratio (4). Fish oil has also been shown to interrupt the complete
biohydrogenation of C18 PUFA, resulting in increased pro-
duction of trans-11 18:1 (5–7), the precursor for CLA (cis-9,
trans-11) in the mammary gland (8).

The bacteria involved in the different steps of the biohy-
drogenation pathway have been categorized as Group A and B
(9): group A bacteria hydrogenate 18:2(n-6) and 18:3(n-3) to
trans-11 18:1; in contrast, group B bacteria convert the same
fatty acids to 18:0. The only Group B bacteria identified for many
years was �Fusocillus� spp. (10,11). Modern phylogenetic anal-
ysis of recent isolates has now shown that 18:0-forming bacteria,
like the most active Group A bacteria, are part of the Butyrivibrio
fibrisolvens group, an ill-defined taxon that includes the genera
Butyrivibrio and Pseudobutyrivibrio and the species Clostridium
proteoclasticum (12,13). Group B bacteria (18:0 producers) form
a tight grouping in which strains cluster together close to C.
proteoclasticum (14,15). For this reason, in this article, the 18:0
producers are described as C. proteoclasticum.
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Advances in molecular microbial technology based on 16S
ribosomal RNA (rRNA) genes mean that we are now able to
quantify these bacterial groups using quantitative PCR (QPCR)
and to investigate total eubacterial and Butyrivibrio-specific
population changes using denaturing gradient gel electrophoresis
(DGGE) (16). One of the major advantages of these molecular
methodologies is the avoidance of an often laborious cultivation
step that is frequently error-prone due to media selectivity and
the suspected existence of noncultivable bacteria.

The aims of this study were to assess the involvement of C.
proteoclasticum, other Butyrivibrio-related spp. and eubacteria
in general in the biohydrogenation pathways operating in the
rumen.

Materials and Methods

Animals, diets, and experimental design. The experiment was
conducted under the authorities of the UK Animal (Scientific Procedures)

Act (1986). Six Hereford 3 Friesian steers (609 6 6.9 kg) prepared with

ruminal cannulae and simple T-piece cannulae in the proximal duode-

num [immediately post-pylorus and pre-common bile duct; (17)] were
offered grass silage plus 1 of 3 concentrates: F0, F1, and F3 that provided

increasing amounts of fish oil: 0, 23, and 69 g � kg21 dry matter (DM),

respectively (0, 1, and 3% of DM intake, respectively). The grass silage
was prepared from first-cut perennial ryegrass (Lolium perenne) in May

2002. Salmon (Salmo salar) oil was purchased from the International

Fish Meal and Oil Manufacturers Association. To maintain an iso-lipid

nature of the diets, the addition of fish oil was balanced by the removal
of Megalac (Volac; Table 1). The total daily allowance was set at 14 g

DM � kg21 live weight to ensure complete daily consumption with a forage:

concentrate ratio of 60:40 (DM basis). Steers were housed in individual

pens and transferred to stalls for each measurement period. The building
was well ventilated and steers had free access to fresh water and mineral

blocks (Baby Red Rockies, Tithebarn; composed of 380 g � kg21 Na, 5000

mg � kg21 Mg, 1500 mg � kg21 Fe, 300 mg � kg21 Cu, 300 mg � kg21 Zn,
200 mg � kg21 Mn, 150 mg � kg21 I, 50 mg � kg21 Co, and 10 mg � g21 Se).

The experimental design consisted of a replicated 3 3 3 Latin Square

with 2 steers per treatment. Each 21-d period consisted of 17 d of

adaptation to the experimental diets and 4 d for sample collection. Steers
received their daily allocations in 2 equal meals at 0900 and 1600.

Digesta flow at the duodenum was estimated using a dual-phase marker

technique with ytterbium acetate and chromium EDTA as the particu-

late and liquid phase markers, respectively (18). Ytterbium acetate
(375 mg � d21 Yb) and chromium EDTA (2401 mg � d21 Cr) were infused

via separate lines intraruminally at a rate of 28 mL � h21 commencing on

d 8. On d 18 and 19, 400 mL of duodenal digesta were collected manually

every 3 h over a 24-h period, bulked, and stored at 4�C for further

fractionation (see below). Samples of strained ruminal fluid (1 L) were

taken 2 h post-feeding, for microbial analysis on d 21 and 10 mL strained

ruminal fluid were taken every 2 h over a 12-h period (0830 to 2030) to

measure pH, ammonia-nitrogen (ammonia-N), and volatile fatty acids

(VFA) concentration in the rumen.

Sample preparation and chemical analysis. Accumulated samples of

daily duodenal digesta were thoroughly mixed and a whole and

centrifuged fraction produced as described by Lee et al. (19). Separate

samples of silage and concentrate were taken daily (;500 g) during the
sampling periods and pooled subsamples were freeze-dried, ground, and

retained at 220�C for chemical analysis (19). The microbial fraction of

ruminal fluid was obtained as described by Lee et al. (20) and freeze-
dried and ground before molecular microbial analysis ensued. The fatty

acids in the silage and concentrate were measured using a 1-step

extraction-transesterification procedure (21). Digesta fatty acids were

obtained by direct hydrolysis at 60�C, with added internal standard (100
mL 21:0 methyl ester, 15 g � L21 CHCl3), in 5 mol � L21 KOH in aqueous

methanol. Potassium carboxylates were converted into fatty acids by the

addition of 5 mol � L21 H2SO4 and methylated using 5% HCl in meth-

anol at 50�C (22). Samples were analyzed by GC on a CP-Select chem-
ically bonded for FAME column (100-m 3 0.25-mm i.d.; Varian), split

injection 30:1, helium carrier gas, and a temperature gradient program

according to Lee et al. (6). Peaks were identified from external standards
(ME61, Larodan Fine Chemicals; S37, Supelco; CLA, Matreya) and

quantified using the internal standard (21:0) using the Varian star 6.4.1

software.

DNA extraction from rumen microbial samples. Genomic DNA was

extracted from rumen microbial samples (10 mg DM) using the BIO101

FastDNA SPIN kit for soil (Qbiogene) in conjunction with a FastPrep

cell disrupter instrument (Bio101, ThermoSavant, Qbiogene) according

to the manufacturer’s instructions, except that the samples were pro-
cessed for 3 3 30 s at speed 6.0 in the FastPrep instrument. The integrity

of the DNA was verified by agarose gel electrophoresis.

PCR-DGGE analysis of the total eubacterial population and the

Butyrivibrio group. Amplification of the V6-V8 region of the 16S

rRNA gene was carried out with the primer pair F968GC (5#-CGC CCG

CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GAA

CGC GAA GAA CCT TAC-3#) and R1401 (5#-CGG TGT GTA CAA

GAC CC-3#) (23,24), and F968GC and B fib (5#-TTC GGG CAT TYC
CRA CT-3#) for total eubacterial and Butyrivibrio group-specific PCR,

respectively. The 16S rRNA-targeted Butyrivibrio spp. specific reverse

primer was based on a B. fibrisolvens probe published by Klieve et al.
(25), but it was modified slightly so that it would amplify all members of

the Butyrivibrio group while still fitting the criteria required for PCR-

DGGE. In brief, we checked specificity in silico using an alignment of

rumen bacterial sequences previously generated (26) and using the Probe
Match tool in the Ribosomal Database Project-II release 9.42 (27). Once

specificity for the Butyrivibrio group was determined, coverage of this

group was investigated by aligning all Butyrivibrio group 16S rRNA

gene sequences deposited in GenBank and EMBL databases using the
program ClustalW (28). Based on this analysis, 2 bases were changed to

include degeneracy to amplify all members of the Butyrivibrio group

while maintaining specificity. Further specificity of the newly developed
primer was confirmed by PCR of many pure cultures. Various Mg

concentrations and annealing temperatures were investigated so that

maximum specificity could be obtained while ensuring sensitivity at the

same time. A Mg concentration of 3 mmol � L21 was required to ensure
sensitivity and an annealing temperature of 58�C was required to obtain

specificity (data not shown). Specificity was then checked using DGGE

analysis of ruminal digesta samples obtained from 2 ruminally cannu-

lated Holstein-Friesian nonlactating dairy cows fed grass silage as de-
scribed below. Dominant DGGE bands were excised and sequenced

revealing that this PCR-DGGE amplified both cultivable and as yet

uncultivated members of the Butyrivibrio group. Of 15 clones obtained
from 5 dominant bands, 6 had 91% identity to Eubacterium cylindroides

TABLE 1 Formulation of the concentrate component
of experimental diets

Diet

Ingredients F0 F1 F3

g � kg21 DM

Barley 535 537 546

Molasses sugar beet pulp 200 200 200

Molasses 50 50 50

Soya bean meal 110 110 110

Megalac 80 55 0

Fish oil (Salmo salar) 0 23 69

Mineral premix1 25 25 25

Total 1000 1000 1000

1 Mineral premix was obtained from Baby Red Rockies, Tithebarn Ltd. (Winsford,

Cheshire, UK) and was composed of 380 g kg21 Na, 5,000 mg kg21 Mg, 1,500

mg kg21 Fe, 300 mg kg21 Cu, 300 mg kg21 Zn, 200 mg kg21 Mn, 150 mg kg21 I, 50

mg kg21 Co, and 10 mg kg21 Se.
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L346616, so it should also be noted that this PCR-DGGE may amplify

Eubacterium spp. The reverse B fib primer does have one and sometimes

2 mismatches in the middle of the primer for sequences deposited for

cultivable Eubacterium spp. and in the presence of eubacterial 16S rRNA

having a 100% match with this primer, amplification of Eubacterium spp.

should be minimal.

All PCR amplifications were performed using a 2720 thermal cycler

(Applied Biosystems) in 50-mL volumes containing 13 PCR buffer (20

mmol � L21 Tris HCl, pH 8.4, 50 mmol � L21 KCl), 3 mmol � L21 MgCl2,

200 mmol/L deoxyribonucleotide triphosphate mix, 500 mmol � L21 each

primer, and 1.25 U of iTaq DNA polymerase (Bio-Rad Laboratories)

with ;100 ng of DNA template. Amplification conditions were: an

initial denaturation of 95�C for 3 min followed by 35 cycles of 95�C for

30 s, 56�C (total eubacteria) or 58�C (Butyrivibrio group) for 30 s and

72�C for 1 min, and then a final extension of 72�C for 5 min. Ampli-

fication of products was verified by agarose gel electrophoresis.

Amplicons were loaded onto 6% polyacrylamide gels with a 35–60%

(total eubacteria) or a 35–65% (Butyrivibrio group) denaturing gradient

[100% denaturant consisting of 40% (v:v) deionized formamide and 7

mol/L urea] and electrophoresis performed in a D-Code system (Bio-Rad

Laboratories) as described previously (29). Gels were then stained with

AgNO3 (30). Gels were scanned using a GS-710 calibrated imaging

densitometer (Bio-Rad Laboratories) and the saved image imported into

the software package Fingerprinting (Bio-Rad Laboratories) for analysis.

DGGE banding patterns were analyzed based on the presence and

absence of the bands and resultant binary matrices were translated into

distance matrices using the Dice similarity coefficient, with a position

tolerance of 0.5% and optimization parameter of 1%. Finally, clusters

were constructed using the method of unweighted pair group method

with arithmetic mean analysis. The binary data generated were used to

calculate band number and the Shannon-Weiner diversity index (24,31)

using the Fingerprint Analysis with Missing Data software (32).

QPCR analysis. Total eubacterial amplification was carried out on

ruminal digesta samples in a final volume of 25 mL containing 12.5 mL

SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich), 250 nmol � L21

each of EubF1 5#-GTG STG CAY GGY TGT CGT CA-3# and Eub R1

5#-GAG GAA GGT GKG GAY GAC GT-3# (33), and 2 mL of a 1:100
dilution of extracted genomic DNA. The thermal cycling program was

30 cycles of 94�C for 30 s and 61�C for 30 s with an initial cycle of 94�C
for 5 min. After PCR, a dissociation curve (melting curve) was constructed

in the range of 55�C to 95�C. All samples were run in triplicate. A
bacterial standard was prepared with equal amounts of genomic DNA

from 8 different pure cultures of bacteria: Clostridium aminophilum
(ATCC 49906), Peptostreptococcus anaerobius (ATCC 27337), Prevotella
ruminicola (ATCC 19189), Fibrobacter succinogenes (ATCC 19169),

B. fibrisolvens [JW11; Rowett Research Institute (RRI)], Ruminococcus
albus (SY3; RRI), Selenomonas ruminantium (Z108; RRI), and Strepto-
coccus bovis (ES1; RRI).

QPCR analysis of 18:0-producing bacteria was conducted according

to the method by Paillard et al. (34) on rumen-derived samples. Dilutions

of purified genomic DNA from the control strain Clostridium proteo-
clasticum P-18 (RRI) were used to construct specific calibration curves.

All samples were run in triplicate. Amplification was carried out in a final

volume of 25 mL containing 12.5 mL of JumpStart Taq ReadyMix (Bio-

Rad Laboratories), 400 and 800 nmol � L21 of forward (SA-FW; 5#-TCC

GGT GGT ATG AGA TGG GC) and reverse primers (SA-RV; 5#-GTC

GCT GCA TCA GAG TTT CCT-3#), respectively, 250 nmol � L21 of molec-

ular beacon (5#-6 FAM-CCG CTT GGC CGT CCG ACC TCT CAG

TCC GAG CGG-DABCYL-3#), and 2 mL of a 1:10 dilution of extracted

genomic DNA. The thermal cycling program was 40 cycles of 30 s at

95�C, 1 min at 55�C, and 30 s at 72�C with an initial cycle of 95�C for 10

min. Fluorescence data were collected at the end of the hybridization step

at excitation and emission wavelengths of 490 and 530 nm, respectively.

All QPCR were performed using an iCycler iQ thermal cycler (Bio-

Rad Laboratories) and results were analyzed using the iCycler iQ

detection system software (Bio-Rad Laboratories).

Calculations and statistical analysis. Digesta flows were estimated

after mathematical reconstitution of true digesta as described by

Faichney (18). Biohydrogenation of PUFA and LCPUFA was assessed

as the difference between daily intake and duodenal flow (g � d21) as a

proportion of daily intake. Data for intakes and flows of nutrients
[organic matter (OM), total N, neutral detergent fiber (NDF), and fatty

acids], for rumen fermentation characteristics (pH, ammonia-N, VFA),

and for eubacterial QPCR quantification were subjected to Restricted

maximum likelihood analysis using GenStat [release 9.1, (35)]. The
model included carryover and diet (treatment) as the fixed effect, and

steer, period, and their interactions as the random effect. Treatment

effects were further partitioned using a polynomial contrast to evaluate

the significance of linear and quadratic components of the response to
treatments. The level treated as not significant was P . 0.05, but trends

were also expressed (P , 0.1). For band number and Shannon-Weiner

diversity index data, difference was also inferred by using a Student’s t
test (32,35). For the correlation between the flow of 18:0 and the DNA

concentration of 18:0-producing bacteria, bootstrap analysis (100

bootstrap measures) (35) was conducted to characterize the relationship

more accurately, because linear regression demonstrated a few data
points with high leverages.

Results

Chemical composition of the experimental diets. Concen-
trates were of typical composition with respect to barley and
molasses sugar beet pulp with differences in the oil composition
only (Table 1). The grass silage was of good quality with a low
pH, and had comparatively low ammonia-N � g21 total-N with
30.1 g total-N � kg21 DM (Table 2). More than 50% of the fatty
acid existed in the form of 18:3(n-3) in the grass silage. LCPUFA
such as 20:5(n-3), 22:5(n-3), and 22:6(n-3) were undetectable in
F0. Supplementing the concentrate with fish oil increased the
LCPUFA concentration roughly proportionally to the dietary
concentration of fish oil (Table 2).

TABLE 2 Chemical composition and fatty acid profile
of the experimental diets1

Concentrate

Silage F0 F1 F3

g � kg21 DM

DM 249 872 873 876

Crude protein 188 161 164 163

NDF 500 274 271 286

Ammonia-N 2.89 N/A2 N/A2 N/A2

pH 3.72 N/A2 N/A2 N/A2

Lactic acid 123 N/A2 N/A2 N/A2

Fatty acid composition

12:0 0.06 0.05 0.11 0.04

14:0 0.17 0.83 1.84 3.37

16:0 4.75 32.89 26.2 14.4

16:1 0.06 0.12 1.08 3.49

18:0 0.40 2.58 2.34 1.92

18:1(n-9) 0.53 22.42 18.94 12.11

18:2(n-6) 3.70 15.56 14.28 13.48

18:3(n-3) 16.29 1.29 1.42 1.93

20:0 0.12 0.20 0.19 0.17

20:5(n-3) ND3 ND3 0.94 3.87

22:5(n-3) ND3 ND3 0.25 1.00

22:6(n-3) ND3 ND3 1.32 5.60

Total fatty acids 27.1 77.9 74.5 72.7

1 Values are means; n ¼ 3.
2 N/A, Not applicable.
3 ND, Not detected.
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Nutrient intake, duodenal flow, and rumen fermentation

characteristics. As indicated in the experimental design, DM
intake was controlled, with the mean intake of 7.42 kg � d21

with the targeted forage:concentrate ratio (60:40, DM basis)
throughout the experiment. Duodenal flow of total-N indicated
a net gain in steers fed diet F0 and F1 compared with the intakes
and was not different between treatments (Table 3). Apparently
digested NDF in the rumen ranged from 65 to 80% of intakes in
all treatments. There were very few changes in rumen pH and
the concentrations of ammonia-N and total VFA in the rumen
(Table 3).

Fatty acids intake, duodenal flow, and biohydrogenation.

Total fatty acid intake was different (P , 0.001) across treatments
with steers fed F3 consuming 25 g � d21 less than steers offered
the F0 diets, although the difference was marginal (just 7% of F0)
(Table 4). Duodenal flow of total fatty acids indicated a net
gain of 52 and 73 g � d21 in steers fed diets F0 and F1, respec-
tively, but a net loss of 14 g � d21 in steers fed diet F3 compared
with the intakes. Increasing the concentration of fish oil culmi-
nated in greater intakes and flows of major LCPUFA, including
20:5(n-3), 22:5(n-3), and 22:6(n-3). Duodenal flow of 18:0 was
much higher than intake in steers receiving all diets and de-
creased extensively with increasing concentration of fish oil from
F0 to F3 (P , 0.001). Flow of total trans 18:1 increased 2.0-fold
in steers fed diet F3 relative to steers fed diet F0 (P , 0.001) and
this was largely due to increased trans-10 and trans-11, with
these isomers contributing .50% of total trans 18:1 in digesta
(Table 5). Further fractionation of total cis 18:1 showed that the
cis-9 was largely responsible for the decrease in the duodenal
flow of this fraction. The most commonly reported CLA isomers,
namely cis-9, trans-11 and trans-10, cis-12 CLA, combined flow
to the duodenum accounted for 52 and 50% of total CLA flow in

steers fed the F1 and F3 diets, respectively (Table 5). Fish oil did
not affect the duodenal flow of the cis-9, trans-11 isomer, while
increasing fish oil had an elevatory effect on trans-10, cis-12 flow
(P , 0.001). However, total CLA flow to the duodenum did not
change, with trans-11 trans-13 most abundant in steers fed all
diets. Biohydrogenation of 18:1(n-9), 18:2(n-6), and 18:3(n-3)
ranged between 0.58 and 0.97 among treatments. Likewise,
the majority of 20:5(n-3) and 22:6(n-3) was hydrogenated in the
rumen and biohydrogenation of 22:5(n-3) was lower than the
other LCPUFA (Table 6).

Microbial population profiling. PCR-DGGE analysis of 16S
rRNA genes using primers universal for eubacteria indicated
complex communities in all samples, with many similarities
between steers receiving the F0 and F1 diets (Fig. 1A). Diet F3
substantially altered the bacterial composition in the rumen of
steers fed this diet. Cluster analysis separated steers fed diet F3
from those fed diets F0 and F1, with 77% of the band positions
being the same (Fig. 1A). Band number also decreased (P , 0.05)
in rumen samples taken from steers fed diet F3 compared to
those fed diets F0 and F1 (Table 7). Similar analysis for members
of the Butyrivibrio group showed a less complex pattern than
eubacteria (Fig. 1B). Two main clusters were evident, separating

TABLE 3 Intake and duodenal flow of OM, total-N, NDF,
and rumen fermentation parameters in steers
receiving F0, F1, or F3 diets1

Diets Significance2

F0 F1 F3 SED L Q

Intake, kg � d21

OM 6.61 6.61 6.70 0.074 NS NS

Total N 0.21 0.21 0.21 0.002 * NS

NDF 3.08 2.92 3.10 0.034 NS z

Duodenal flow, kg � d21

OM 3.83 3.62 3.46 0.317 NS NS

Total N 0.24 0.23 0.22 0.022 NS NS

NDF 1.07 0.77 0.61 0.158 y NS

Fermentation parameters

pH 6.46 6.58 6.59 0.127 NS NS

Ammonia-N, mmol � L21 9.69 10.25 10.03 0.714 NS NS

VFA (molar proportion)

Acetate 58.9 57.8 57.1 0.81 * NS

Propionate 22.6 22.9 23.3 0.66 NS NS

Iso-Butyrate 1.40 1.46 1.45 0.127 NS NS

n-Butyrate 13.2 13.5 14.1 0.665 NS NS

Iso-Valerate 1.93 2.22 2.57 0.140 z NS

n-Valerate 1.73 1.70 1.70 0.117 NS NS

Total VFA, mmol � L21 78.9 77.7 79.8 4.81 NS NS

1 Values are means, n ¼ 6.
2 L, Linear response; Q, quadratic response; NS, not significant, P $ 0.05; *P , 0.1;
yP , 0.05; zP , 0.01.

TABLE 4 Fatty acid intake and duodenal flows in steers
receiving F0, F1, or F3 diets1

Diets Significance2

F0 F1 F3 SED L Q

Intake g � d21

12:0 0.45 4.07 2.94 0.108 § §

14:0 2.92 5.80 10.13 0.157 § y

16:0 116.2 94.0 57.6 1.29 § *

18:0 9.23 8.28 6.81 0.091 § NS

18:1(n-9) 66.3 54.7 33.3 0.75 § NS

18:2(n-6) 59.4 56.9 54.3 0.60 § NS

18:3(n-3) 78.4 78.8 81.0 0.94 y NS

20:4 0.07 0.27 0.77 0.013 § y

20:5(n-3) ND3 2.87 10.65 0.169 § N/A

22:5(n-3) ND3 0.72 2.73 0.043 § N/A

22:6(n-3) ND3 3.88 15.29 0.241 § N/A

Total fatty acids 344 331 319 3.6 § NS

Duodenal flow

12:0 0.58 1.08 0.50 0.092 § §

14:0 2.93 4.67 4.70 0.275 § §

16:0 118.8 112.2 65.3 9.50 § NS

16:1 0.30 0.75 1.58 0.262 § NS

18:0 152.7 115.1 58.9 19.09 § NS

18:1 trans (total) 42.5 73.2 83.4 9.96 z *

18:1(n-9) 20.4 21.2 14.4 2.89 y NS

18:2(n-6) 7.40 7.64 3.40 1.344 z NS

18:3(n-3) 3.32 3.71 2.08 0.734 * NS

18:2 cis-9, trans-11 0.21 0.28 0.13 0.058 NS *

20:4 0.34 0.45 0.24 0.127 NS NS

20:5(n-3) 0.27 0.48 0.83 0.199 y NS

22:5(n-3) 0.25 0.40 0.88 0.294 * NS

22:6(n-3) 0.14 0.39 1.01 0.249 z NS

Total fatty acids 396 404 305 34.0 y NS

1 Values are means; n ¼ 6.
2 L, linear response; Q, quadratic response; N/A, not applicable; NS, not significant,

P $ 0.05; *P , 0.1; yP , 0.05; zP , 0.01; §P , 0.001.
3 ND ¼ not detected.
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steers fed diet F3 from those fed the other 2 diets, with 66%
of the band positions being similar (Fig. 1B), and again band
numbers were lower (P , 0.05) in F3 (Table 7). Subclusters
between rumen samples derived from steers fed diets F0 and F1
were not clear in either analysis, indicating that supplementing
fish oil at 1% of DM did not substantially alter microbial

population in the rumen. The Shannon-Weiner diversity index
showed only minor differences in bacterial diversity for steers
fed all diets with respect to both total eubacteria and the
Butyrivibrio population (Table 7).

QPCR of 16S rRNA genes indicated that total eubacterial
DNA concentration was not significantly different as fish oil
increased (data not shown). The same was true of C. proteo-
clasticum 16S rRNA gene concentration (Fig. 2A). When
C. proteoclasticum numbers were expressed as a proportion of
total eubacteria, there was no significant differences as fish
oil increased (data not shown). A regression approach to the
relationship between fish oil supplementation in the diets of the
steers with the number of C. proteoclasticum in the rumen
showed a significant relationship (P , 0.05), but the percentage
variance accounted for (equivalent to adjusted r2) was only 22.8,
which was not sufficient to provide a reliable interpretation of
the relationship (Fig. 2B). Therefore, bootstrap estimates from
100 bootstrap samples were performed to examine the correla-
tion more accurately and the results were not fully supportive of
a clear association between the 2 variables (Fig. 2B).

Discussion

Numerous reports have appeared in the literature demonstrating
the effects of fish oil on ruminal biohydrogenation. The addition

TABLE 5 Duodenal flow of 18:1 and CLA isomers in steers
receiving F0, F1, or F3 diets1

Diets Significance2

F0 F1 F3 SEM L Q

Fatty acid flow g � d21

18:1 trans

4 0.38 0.35 0.17 0.017 § y

5 0.16 0.21 0.18 0.024 NS NS

6 1 7 1 8 2.74 4.13 3.64 0.641 NS *

9 1.60 3.01 2.99 0.409 y y

10 2.69 4.41 15.40 2.910 § NS

11 19.1 40.4 40.9 6.705 y y

12 3.01 5.72 6.00 0.515 § z

13 1 14 and cis-6 4.47 5.07 3.55 0.770 NS NS

15 and cis-10 3.93 5.09 5.00 0.680 NS NS

16 4.17 5.15 5.72 0.766 * NS

Total 18:1 trans 42.5 73.2 83.4 9.96 z *

18:1 cis

9 20.4 21.2 14.4 2.89 y NS

11 0.98 1.72 2.78 0.408 § NS

12 1.00 0.78 0.65 0.141 y NS

13 0.04 0.58 0.75 0.222 y NS

14 0 0.44 1.10 0.240 § NS

15 1.02 1.07 2.02 0.201 § NS

Total 18:1 cis 23.5 25.8 21.6 3.14 NS NS

CLA3

cis-9, trans-11 0.21 0.28 0.13 0.058 NS *

trans-10, cis-12 0.09 0.26 0.49 0.070 § NS

trans-11, trans-13 1 trans-13,

trans-15

0.62 0.44 0.54 0.094 NS *

trans-7, trans-9 to trans-10,

trans-12

0.06 0.07 0.05 0.033 NS NS

Total CLA 0.96 1.03 1.23 0.180 NS NS

1 Values are means; n ¼ 6.
2 L, linear response; Q, quadratic response; N/A, not applicable; NS, not significant,

P $ 0.05; *P , 0.1; yP , 0.05; zP , 0.01; §P , 0.001.
3 CLA isomers of double bond positions were identified according to Delmonte et al. (55).

TABLE 6 Biohydrogenation of unsaturated fatty acids in the
rumen of steers receiving F0, F1, or F3 diets1

Diets Significance2

F0 F1 F3 SED L Q

g � g21

18:1(n-9) 0.69 0.61 0.58 0.056 * NS

18:2(n-6) 0.88 0.88 0.94 0.024 y NS

18:3(n-3) 0.96 0.95 0.97 0.010 NS NS

20:5(n-3) N/A2 0.82 0.93 0.021 § N/A

22:5(n-3) N/A2 0.48 0.70 0.223 NS N/A

22:6(n-3) N/A2 0.90 0.94 0.031 NS N/A

1 Values are means; n ¼ 6.
2 L, linear response; Q, quadratic response; N/A, not applicable; NS, not significant,

P $ 0.05; *P , 0.1; yP , 0.05; §P , 0.001.

FIGURE 1 PCR-DGGE-derived unweighted pair group method with

arithmetic mean dendrogram showing the effect of fish oil on the total

eubacterial (A) and Butyrivibrio (B) populations in the rumen. F0, F1,

and F3 relate to diets consisting of 0, 1, and 3% fish oil intake ex-

pressed in terms of DM intake. Scale relates to percent similarity.
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of fish oil to ruminant rations has been used to manipulate
LCPUFA concentrations of meat (2,4) and milk (36,37). Upon
ingestion by ruminants, dietary lipid undergoes substantial
lipolysis followed by microbial biohydrogenation to produce a
high concentration of SFA in the rumen. One of the major
pathways of biohydrogenation in the rumen is simplified as the
conversion of free C18 PUFA to conjugated dienes or trienes,
and then to 18:1 and finally by reduction to form 18:0 (11). The
results of the present experiment were consistent with earlier
findings in that the flow of 18:0 to the duodenum was sig-
nificantly lower when fish oil was incorporated into the diet

of steers. The effect was also dependent on the concentration
of the fish oil, as observed in other studies too (5,6,36). Sev-
eral researchers reported a similar phenomenon with fish oil-
supplemented diets (5–7,36) and suggested that the fish oil effect
might involve an inhibition of the enzyme that catalyzes the final
biohydrogenation step in the rumen. Alternatively, the prolifer-
ation of bacteria capable of conversion of 18:3 and 18:2 through
to 18:0 might be inhibited by the LCPUFA in fish oil, resulting in
increased trans-11 18:1. A recent study by Wąsowska et al. (38)
showed that the addition of 20:5(n-3) or 22:6(n-3) (50 mg � L21)
to pure cultures inhibited the growth and isomerase activity of B.
fibrisolvens, whereas fish oil, in which the fatty acids are present
as triacylglycerol, had no effect. Other reports (39,40) suggested
that the accumulation of 18:2(n-6) in the rumen [by feeding
more 18:2(n-6) to the ruminant] causes incomplete biohydroge-
nation. However, in the present study, the intake of 18:2(n-6)
was similar with increasing concentrations of fish oil, excluding
any possibility that 18:2(n-6) in the diets was responsible for the
observed effect on biohydrogenation. Our data showed that fish
oil at 3% of DM intake decreased the 18:0 flow and also
increased the flow of trans-11 18:1 to the duodenum.

Increased flows of 20:5(n-3), 22:5(n-3), and 22:6(n-3) to the
duodenum occurred in steers fed fish oil diets. The increased
duodenal flow of these fatty acids in steers was lower than the
increased dietary intake between diets F1 and F3. For example,
the intake of 22:6(n-3) in steers fed diet F3 was 2.9-fold higher
than that of steers fed diet F1 while only 1.6-fold higher in the
duodenal flow. Biohydrogenation was presumably a major
reason for this difference (5–7), although the degree to which
these LCPUFA are biohydrogenated and the factors affecting
biohydrogenation of LCPUFA in the rumen are still not well
understood. Several studies have indicated that 20:5(n-3) and
22:6(n-3) are extensively metabolized in the rumen in vivo (5,6,41).
In vitro studies have been less clear with some studies showing
limited biohydrogenation (42), while others showed a decrease
(43,44) or an increase in the extent of 20:5(n-3) and 22:6(n-3)
biohydrogenation in relation to fish oil addition (45). It is also
notable that although there was no intake of LCPUFA in the
present study for the F0 diet, there were still measurable flows of
these LCPUFA at the duodenum, which may reflect endogenous
lipid from cell desquamation during digestive processes.

In terms of CLA, cis-9, trans-11 CLA was not the major
isomer in duodenal digesta; trans-11, trans-13 CLA isomer
accounted for ;50% of total CLA. Increased flow of trans-trans
CLA leaving the rumen is consistent with previous reports of
diets supplemented with fish oil (5,6,46). In addition, Lee et al.
(7) reported that diets with high levels of 18:3(n-3), such as those
based on forage or supplemented with oil rich in 18:3(n-3),
produced trans-11, trans-13 as the predominant CLA isomer,
possibly as a consequence of its involvement in the 18:3(n-3)
biohydrogenation pathway. Duodenal flow of trans-10, cis-12
CLA, which is associated with modulating fat deposition (47)
and milk fat depression (48), was significantly higher in steers
fed the F3 diet. Several bacteria have been reported to convert
18:2(n-6) to trans-10, cis-12 CLA, including Lactobacillus spp.
(49), Propionibacterium acnes (50), and Megasphaera elsdenii
(51). However, to what extent these particular microorganisms
play a role in ruminal biohydrogenation with the diet sup-
plemented with fish oil remains unclear.

The microbial ecology of the rumen changed substantially
with the addition of fish oil to the diet of steers, particularly at
the higher inclusion rate. Many fewer bands were present in
DGGE of 16S rRNA genes amplified by universal eubacterial
primers. This reflects the toxicity of unsaturated fatty acids to

FIGURE 2 18:0-producing bacterial 16S rRNA gene concentration

obtained from strained rumen fluid of steers given the experimental

diets (A), and correlation between 18:0-producing bacterial 16S rRNA

gene concentration and 18:0 flow to the duodenum (B). F0, F1, and F3

relate to diets consisting of 0, 1, and 3% fish oil intake expressed in

terms of DM intake, n ¼ 6. L, Linear response; Q, quadratic response.

TABLE 7 Band number and Shannon-Weiner diversity index
calculated from the total eubacterial and the
Butyrivibrio group-specific DGGE profiles obtained
from rumen samples of steers receiving F0, F1,
or F3 diets1

Diets

F0 F1 F3

Total eubacteria

Band number 69 6 3.4a 66 6 3.9a 58 6 4.6b

Shannon-Weiner diversity index 6.56 (0.005)a 6.36 (0.007)b 6.61 (0.005)b

Butyrivibrio group specific

Band number 69 6 2.7a 67 6 6.4a 61 6 3.9b

Shannon-Weiner diversity index 4.37 (0.041) 4.18 (0.054) 4.51 (0.035)

1 Values are means 6 SEM, n ¼ 6 or index (variance). Means in a row with super-

scripts without a common letter differ, P , 0.05.
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ruminal bacteria, which is particularly severe for cellulolytic
species and also butyrate producers (52), although no difference
in the concentration of ruminal butyrate was observed in the
present study. The altered banding pattern presumably reflects
the loss of the most sensitive species. Biohydrogenation occurs to
detoxify the fatty acids. DGGE was also used to analyze the
impact of fish oil on the Butyrivibrio population. These bacteria
are believed to be the most active species involved in fatty acid
biohydrogenation (39,53). Their sensitivity to PUFA is highly
variable, with some members of the group sensitive to growth
inhibition at PUFA concentrations of 5 mg/L (13) while others
tolerate concentrations many times higher. The persistence of
some bands but not others in the Butyrivibrio DGGE is con-
sistent with this range of sensitivity.

Bacteria forming a small branch of the Butyrivibrio phylo-
genetic tree, clustering around C. proteoclasticum, are among
the most sensitive ruminal species to the toxic effects of PUFA
(13,15). They are also the only known ruminal species to convert
trans-11 18:1 to 18:0 (10,15). C. proteoclasticum was originally
isolated as a proteolytic species (54). Its name does not reflect its
taxonomic position accurately, because it is not a spore former
and is distantly related to true Clostridium species (15) and its
name is in need of revision. Whether C. proteoclasticum truly
represents the predominant 18:0 producers in the rumen is by no
means certain and it is possible that other 18:0 producers have
not yet been cultivated; indeed, some may not be cultivable at all
using present culture techniques. If C. proteoclasticum is indeed
the main 18:0 producer, a strong correlation might be expected
between their numbers and the extent of biohydrogenation to
18:0 in digesta leaving the rumen. Primers and a probe designed
to detect the C. proteoclasticum group and to exclude related
Butyrivibrio that do not form 18:0 (34) were used in QPCR to
assess the influence of fish oil on C. proteoclasticum numbers.
The results were equivocal in the sense that a correlation was
found, but it was rather weak, particularly when comparing
different steers. It may be that other microbial species are
involved, although no other ruminal bacteria, protozoa, or fungi
are known to carry out the reaction to date. Alternatively,
metabolic factors may be involved; for example, 18:0 formation
occurs during the growth phase of C. proteoclasticum, not when
it reaches stationary phase (15). Thus, the metabolic activity of
C. proteoclasticum may not be proportional to 16S rRNA gene
concentration and RNA may be a better marker.

In conclusion, these results are consistent with the hypothesis
that fish oil has an inhibitory effect on the biohydrogenation of
fatty acids in the rumen via its influence on microbial ecology.
Total bacteria and Butyrivibrio populations were changed,
consistent with the elimination of a number of species by fish oil.
Numbers of C. proteoclasticum and duodenal fatty acid com-
position gave a weak correlation that neither offers strong sup-
port for nor against its predominant role in the process vis-à-vis
other unknown bacteria that may convert trans-11 18:0 to 18:0.
We are now attempting to link microbial changes to differences
in fatty acid flow to the duodenum, using multivariate statistical
approaches and sequencing of key bands, to identify other key
bacteria that may be involved at various points of the biohy-
drogenation sequence. This information could potentially allow
the development of novel strategies for manipulating this pro-
cess, leading to the beneficial enhancement in nutritional value
of ruminant products.
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