18 research outputs found

    BORIS/CTCFL promotes a switch from a proliferative towards an invasive phenotype in melanoma cells

    Get PDF
    Melanoma is among the most aggressive cancers due to its tendency to metastasize early. Phenotype switching between a proliferative and an invasive state has been suggested as a critical process for metastasis, though the mechanisms that regulate state transitions are complex and remain poorly understood. Brother of Regulator of Imprinted Sites (BORIS), also known as CCCTC binding factor-Like (CTCFL), is a transcriptional modulator that becomes aberrantly expressed in melanoma. Yet, the role of BORIS in melanoma remains elusive. Here, we show that BORIS is involved in melanoma phenotype switching. Genetic modification of BORIS expression in melanoma cells combined with whole-transcriptome analysis indicated that BORIS expression contributes to an invasion-associated transcriptome. In line with these findings, inducible BORIS overexpression in melanoma cells reduced proliferation and increased migration and invasion, demonstrating that the transcriptional switch is accompanied by a phenotypic switch. Mechanistically, we reveal that BORIS binds near the promoter of transforming growth factor-beta 1 (TFGB1), a well-recognized factor involved in the transition towards an invasive state, which coincided with increased expression of TGFB1. Overall, our study indicates a pro-invasive role for BORIS in melanoma via transcriptional reprogramming

    Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model

    Get PDF
    BACKGROUND: Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and have been previously used to study activation of coagulation and thrombosis during influenza virus infection. OBJECTIVES: This study aimed to explore the use of (heat-inactivated) plasma and lung material from SARS-CoV-2-inoculated ferrets studying COVID-19-associated changes in coagulation and thrombosis. MATERIAL AND METHODS: Histology and longitudinal plasma profiling using mass spectrometry-based proteomics approach was performed. RESULTS: Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. The majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. CONCLUSIONS: We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited

    HCV genotype-1 subtypes and resistance-associated substitutions in drug-naive and in direct-acting antiviral treatment failure patients

    No full text
    Background: Direct-acting antiviral (DAA) treatment regimens and response rates of patients with HCV genotype-1 (GT1) are currently considered subtype-dependent. Identification of clinically relevant resistance-associated substitutions (RASs) in the NS3 and NS5A proteins at baseline and in DAA failures, may also impact clinical decisions. Methods: In a multicentre cohort study (n=308), NS3 or NS5B sequencing (n=248) was used to discriminate between GT1 subtypes. The correlation between baseline NS3 and NS5A RASs on the 12-week sustained virological response (SVR12) rates of 160 of the patients treated with second-generation DAAs was also assessed. Posttreatment resistance analysis was performed on samples from 58 patients exhibiting DAA virological failure. Results: GT1a, GT1b and GT1d subtypes were identified in 23.0%, 75.4% and 1.2% of tested samples. GT1b was most prevalent (97.7%, 128/131) among patients born in the former Soviet Union. The Q80K NS3 RAS was identified in 17.5% (10/57) of the GT1a carriers, most of whom were Israeli-born. NS3 and NS5A baseline RASs showed a negligible correlation with SVR12 rates. Treatment-emergent RASs were observed among 8.9% (4/45) and 76.9% (10/13) of first-and second-generation DAA failures, respectively, with D168V/E (NS3), Y93H and L31M (NS5A) being the most prevalent mutations. Conclusions: NS3 sequencing analysis can successfully discriminate between GT1 subtypes and identify NS3 amino acid substitutions. While pre-treatment NS3 and NS5A RASs marginally affect second-generation DAA SVR12 rates, post-treatment resistance analysis should be considered prior to re-therapy
    corecore