4,253 research outputs found

    Predicting the binding preference of transcription factors to individual DNA k-mers

    Get PDF
    Motivation: Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA–protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. Results: We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF–DNA recognition, and suggest a rational approach for future analyses of TF families. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.Canadian Institutes of Health ResearchOntario Research FundNational Institutes of Health (U.S.)National Human Genome Research Institute (U.S.

    Serum kynurenic acid is reduced in affective psychosis

    Get PDF
    A subgroup of individuals with mood and psychotic disorders shows evidence of inflammation that leads to activation of the kynurenine pathway and the increased production of neuroactive kynurenine metabolites. Depression is hypothesized to be causally associated with an imbalance in the kynurenine pathway, with an increased metabolism down the 3-hydroxykynurenine (3HK) branch of the pathway leading to increased levels of the neurotoxic metabolite, quinolinic acid (QA), which is a putative Nmethyl- D-aspartate (NMDA) receptor agonist. In contrast, schizophrenia and psychosis are hypothesized to arise from increased metabolism of the NMDA receptor antagonist, kynurenic acid (KynA), leading to hypofunction of GABAergic interneurons, the disinhibition of pyramidal neurons and striatal hyperdopaminergia. Here we present results that challenge the model of excess KynA production in affective psychosis. After rigorous control of potential confounders and multiple testing we find significant reductions in serum KynA and/or KynA/QA in acutely ill inpatients with major depressive disorder (N = 35), bipolar disorder (N = 53) and schizoaffective disorder (N = 40) versus healthy controls (N = 92). No significant difference was found between acutely ill inpatients with schizophrenia (n = 21) and healthy controls. Further, a post hoc comparison of patients divided into the categories of non-psychotic affective disorder, affective psychosis and psychotic disorder (non-affective) showed that the greatest decrease in KynA was in the affective psychosis group relative to the other diagnostic groups. Our results are consistent with reports of elevations in proinflammatory cytokines in psychosis, and preclinical work showing that inflammation upregulates the enzyme, kynurenine mono-oxygenase (KMO), which converts kynurenine into 3-hydroxykynurenine and quinolinic acid

    Determination of the Gamow-Teller Quenching Factor from Charge Exchange Reactions on 90Zr

    Full text link
    Double differential cross sections between 0-12 degrees were measured for the 90Zr(n,p) reaction at 293 MeV over a wide excitation energy range of 0-70 MeV. A multipole decomposition technique was applied to the present data as well as the previously obtained 90Zr(p,n) data to extract the Gamow-Teller (GT) component from the continuum. The GT quenching factor Q was derived by using the obtained total GT strengths. The result is Q=0.88+/-0.06 not including an overall normalization uncertainty in the GT unit cross section of 16%.Comment: 11 papes, 4 figures, submitted to Physics Letters B (accepted), gzipped tar file, changed content

    The Muon Anomalous Magnetic Moment: A Harbinger For "New Physics"

    Get PDF
    QED, Hadronic, and Electroweak Standard Model contributions to the muon anomalous magnetic moment, a_mu = (g_mu-2)/2, and their theoretical uncertainties are scrutinized. The status and implications of the recently reported 2.6 sigma experiment vs.theory deviation a_mu^{exp}-a_mu^{SM} = 426(165) times 10^{-11} are discussed. Possible explanations due to supersymmetric loop effects with m_{SUSY} \simeq 55 sqrt{tan beta} GeV, radiative mass mechanisms at the 1--2 TeV scale and other ``New Physics'' scenarios are examined.Comment: 24 page

    Perturbative calculation of the scaled factorial moments in second-order quark-hadron phase transition within the Ginzburg-Landau description

    Get PDF
    The scaled factorial moments FqF_q are studied for a second-order quark-hadron phase transition within the Ginzburg-Landau description. The role played by the ground state of the system under low temperature is emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a perturbative calculation for FqF_q can be carried out. Power scaling between FqF_q's is shown, and a universal scaling exponent ν1.75\nu\simeq 1.75 is given for the case with weak correlations and weak self-interactions.Comment: 12 pages in RevTeX, 12 eps figure

    Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1

    Get PDF
    Uranium (as UO22+), technetium (as TcO4−) and neptunium (as NpO2+) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 μM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments

    Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma

    Get PDF
    Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection. © 2010 Macmillan Publishers Limited.Published versio

    Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter

    Get PDF
    Double-stranded RNAs that are complementary to non-coding transcripts at gene promoters can activate or inhibit gene expression in mammalian cells. Understanding the mechanism for modulating gene expression by promoter-targeted antigene RNAs (agRNAs) will require identification of the proteins involved in recognition. Previous reports have implicated argonaute (AGO) proteins, but identifications have differed with involvement of AGO1, AGO2, or both AGO1 and AGO2 being reported by different studies. The roles of AGO3 and AGO4 have not been investigated. Here, we examine the role of AGO 1–4 in gene silencing and activation of the progesterone receptor (PR) gene. Expression of AGO2 is necessary for efficient gene silencing or activation and AGO2 is recruited to the non-coding transcript that overlaps the promoter during both gene silencing and activation. Expression of AGO1, AGO3 and AGO4 are not necessary for gene silencing or activation nor are AGO1, AGO3, or AGO4 recruited to the target non-coding transcript during gene activation. These data indicate that AGO2 is the primary AGO variant involved in modulating expression of PR by agRNAs

    An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro

    Get PDF
    Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system.The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R
    corecore