816 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Get PDF
    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Study protocol of effectiveness of a biopsychosocial multidisciplinary intervention in the evolution of non-speficic sub-acute low back pain in the working population : cluster randomised trial

    Get PDF
    Background: Non-specific low back pain is a common cause for consultation with the general practitioner, generating increased health and social costs. This study will analyse the effectiveness of a multidisciplinary intervention to reduce disability, severity of pain, anxiety and depression, to improve quality of life and to reduce the incidence of chronic low back pain in the working population with non-specific low back pain, compared to usual clinical care. Methods/Design: A Cluster randomised clinical trial will be conducted in 38 Primary Health Care Centres located in Barcelona, Spain and its surrounding areas. The centres are randomly allocated to the multidisciplinary intervention or to usual clinical care. Patients between 18 and 65 years old (n = 932; 466 per arm) and with a diagnostic of a non-specific sub-acute low back pain are included. Patients in the intervention group are receiving the recommendations of clinical practice guidelines, in addition to a biopsychosocial multidisciplinary intervention consisting of group educational sessions lasting a total of 10 hours. The main outcome is change in the score in the Roland Morris disability questionnaire at three months after onset of pain. Other outcomes are severity of pain, quality of life, duration of current non-specific low back pain episode, work sick leave and duration, Fear Avoidance Beliefs and Goldberg Questionnaires. Outcomes will be assessed at baseline, 3, 6 and 12 months. Analysis will be by intention to treat. The intervention effect will be assessed through the standard error of measurement and the effect-size. Responsiveness of each scale will be evaluated by standardised response mean and receiver-operating characteristic method. Recovery according to the patient will be used as an external criterion. A multilevel regression will be performed on repeated measures. The time until the current episode of low back pain takes to subside will be analysed by Cox regression. Discussion: We hope to provide evidence of the effectiveness of the proposed biopsychosocial multidisciplinary intervention in avoiding the chronification of low back pain, and to reduce the duration of non-specific low back pain episodes. If the intervention is effective, it could be applied to Primary Health Care Centres

    Making the invisible enemy visible.

    Get PDF
    Structural biology plays a crucial role in the fight against COVID-19, permitting us to ‘see’ and understand SARS-CoV-2. However, the macromolecular structures of SARS-CoV-2 proteins that were solved with great speed and urgency can contain errors that may hinder drug design. The Coronavirus Structural Task Force has been working behind the scenes to evaluate and improve these structures, making the results freely available at https://insidecorona.net/

    The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma

    Get PDF
    The neurodegenerative disease glaucoma is characterised by the progressive death of retinal ganglion cells (RGCs) and structural damage to the optic nerve (ON). New insights have been gained into the pathogenesis of glaucoma through the use of rodent models; however, a coherent picture of the early pathology remains elusive. Here, we use a validated, experimentally induced rat glaucoma model to address fundamental issues relating to the spatio-temporal pattern of RGC injury. The earliest indication of RGC damage was accumulation of proteins, transported by orthograde fast axonal transport within axons in the optic nerve head (ONH), which occurred as soon as 8 h after induction of glaucoma and was maximal by 24 h. Axonal cytoskeletal abnormalities were first observed in the ONH at 24 h. In contrast to the ONH, no axonal cytoskeletal damage was detected in the entire myelinated ON and tract until 3 days, with progressively greater damage at later time points. Likewise, down-regulation of RGC-specific mRNAs, which are sensitive indicators of RGC viability, occurred subsequent to axonal changes at the ONH and later than in retinas subjected to NMDA-induced somatic excitotoxicity. After 1 week, surviving, but injured, RGCs had initiated a regenerative-like response, as delineated by Gap43 immunolabelling, in a response similar to that seen after ON crush. The data presented here provide robust support for the hypothesis that the ONH is the pivotal site of RGC injury following moderate elevation of IOP, with the resulting anterograde degeneration of axons and retrograde injury and death of somas
    corecore