102 research outputs found

    Testing and modelling of butt-welded connections in thin-walled aluminium structures

    Get PDF
    The present paper experimentally investigated the mechanical behaviour of butt-welded joints and evaluated suitable numerical approaches for modelling them in thin-walled structures with large shell-based models. Welded connections of both similar and dissimilar materials were first experimentally investigated. Two extruded plates in 6060 and 7003 in temper T6 were used as parent materials for Metal Inert Gas (MIG) welding. Three welded joints were made by combining the two parent materials. Extensive testing was carried out to investigate microstructure, hardness and mechanical stress–strain behaviour of the base materials, heat-affected zones (HAZ) and weld metals. Cross-weld tensile tests with two weld orientations (with respect to the loading direction) were performed to study the load–displacement and fracture behaviour of the welded joints. The experimental results were also used to provide inputs to calibrate and validate shell element-based models simulating the response of welded aluminium structures. Two modelling approaches were investigated. The first approach, which is a conventional “mechanical analysis”, used material model inputs from the experimental testing, assuming uniform HAZ strength. The second modelling approach, which is proposed in this study for engineering applications, relies on inverse modelling of the load–displacement behaviour of similar material cross-weld tension tests to optimize the HAZ and weld properties. The newly proposed modelling approach was further verified based on a set of verification tests of cross-weld tension, using shell-based models with different mesh sizes. A good agreement between numerical and experimental results both in terms of load–displacement and fracture behaviour was obtained, suggesting that the novel modelling approach could be a reliable and efficient method for designing butt-welded aluminium structures.publishedVersio

    Theory of Polarization Attraction in Parametric Amplifiers Based on Telecommunication Fibers

    Get PDF
    We develop from first principles the coupled wave equations that describe polarization-sensitive parametric amplification based on four-wave mixing in standard (randomly birefringent) optical fibers. We show that in the small-signal case these equations can be solved analytically, and permit us to predict the gain experienced by the signal beam as well as its state of polarization (SOP) at the fiber output. We find that, independently of its initial value, the output SOP of a signal within the parametric gain bandwidth is solely determined by the pump SOP. We call this effect of pulling the polarization of the signal towards a reference SOP as polarization attraction, and such parametric amplifier as the FWM-polarizer. Our theory is valid beyond the zero polarization mode dispersion (PMD) limit, and it takes into account moderate deviations of the PMD from zero. In particular, our theory is capable of analytically predicting the rate of degradation of the efficiency of the parametric amplifier which is caused by the detrimental PMD effect

    Efficacy and Safety of Ixekizumab in the Treatment of Radiographic Axial Spondyloarthritis:Sixteen-Week Results From a Phase III Randomized, Double-Blind, Placebo-Controlled Trial in Patients With Prior Inadequate Response to or Intolerance of Tumor Necrosis Factor Inhibitors

    Get PDF
    Objective: To investigate the efficacy and safety of ixekizumab in patients with active radiographic axial spondyloarthritis (SpA) and prior inadequate response to or intolerance of 1 or 2 tumor necrosis factor inhibitors (TNFi). Methods: In this phase III randomized, double-blind, placebo-controlled trial, adult patients with an inadequate response to or intolerance of 1 or 2 TNFi and an established diagnosis of axial SpA (according to the Assessment of SpondyloArthritis international Society [ASAS] criteria for radiographic axial SpA, with radiographic sacroiliitis defined according to the modified New York criteria and ≥1 feature of SpA) were recruited and randomized 1:1:1 to receive placebo or 80-mg subcutaneous ixekizumab every 2 weeks (IXEQ2W) or 4 weeks (IXEQ4W), with an 80-mg or 160-mg starting dose. The primary end point was 40% improvement in disease activity according to the ASAS criteria (ASAS40) at week 16. Secondary outcomes and safety were also assessed. Results: A total of 316 patients were randomized to receive placebo (n = 104), IXEQ2W (n = 98), or IXEQ4W (n = 114). At week 16, significantly higher proportions of IXEQ2W patients (n = 30 [30.6%]; P = 0.003) or IXEQ4W patients (n = 29 [25.4%]; P = 0.017) had achieved an ASAS40 response versus the placebo group (n = 13 [12.5%]), with statistically significant differences reported as early as week 1 with ixekizumab treatment. Statistically significant improvements in disease activity, function, quality of life, and spinal magnetic resonance imaging–evident inflammation were observed after 16 weeks of ixekizumab treatment versus placebo. Treatment-emergent adverse events (AEs) with ixekizumab treatment were more frequent than with placebo. Serious AEs were similar across treatment arms. One death was reported (IXEQ2W group). Conclusion: Ixekizumab treatment for 16 weeks in patients with active radiographic axial SpA and previous inadequate response to or intolerance of 1 or 2 TNFi yields rapid and significant improvements in the signs and symptoms of radiographic axial SpA versus placebo

    Self-compassion and bedtime procrastination: an emotion regulation perspective

    Get PDF
    The current study extended previous research on self-compassion and health behaviours by examining the associations of self-compassion to bedtime procrastination, an important sleep-related behaviour. We hypothesized that lower negative affect and adaptive emotion regulation would explain the proposed links between self-compassion and less bedtime procrastination. Two cross-sectional online studies were conducted. Study 1 included 134 healthy individuals from the community (mean age 30.22, 77.4% female). Study 2 included 646 individuals from the community (mean age 30.74, 68.9% female) who were screened for the absence of clinical insomnia. Participants in both studies completed measures of self-compassion, positive and negative affect and bedtime procrastination. Participants in study 2 also completed a measure of cognitive reappraisal. Multiple mediation analysis in study 1 revealed the expected indirect effects of self-compassion on less bedtime procrastination through lower negative affect [b = − .09, 95% CI = (− .20, − .02), but not higher positive affect. Path analysis in study 2 replicated these findings and further demonstrated that cognitive reappraisal explained the lower negative affect linked to self-compassion [b = − .011; 95% CI = (− .025; − .003)]. The direct effect of self-compassion on less bedtime procrastination remained significant. Our novel findings provide preliminary evidence that self-compassionate people are less likely to engage in bedtime procrastination, due in part to their use of healthy emotion regulation strategies that downregulate negative mood

    A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone-Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation

    Get PDF
    WOS:000306840400020Peer reviewe

    Downloaded from

    No full text
    Citations (this article cites 9 articles hosted on th

    Strain localization and ductile fracture in advanced high-strength steel sheets

    Get PDF
    An experimental-numerical approach is applied to determine the strain localization and ductile fracture of high-strength dual-phase and martensitic steel sheet materials. To this end, four different quasi-static material tests were performed for each material, introducing stress states ranging from simple shear to equi-biaxial tension. The tests were analysed numerically with the nonlinear finite element method to estimate the failure strain as a function of stress state. The effect of spatial discretization on the estimated failure strain was investigated. While the global response is hardly affected by the spatial discretization, the effect on the failure strain is large for tests experiencing necking instability. The result is that the estimated failure strain in the different tests scales differently with spatial discretization. Localization analysis was performed using the imperfection band approach, and applied to estimate onset of failure of the two steel sheet materials under tensile loading. The results indicate that a conservative failure criterion for ductile materials may be established from localization analysis, provided strain localization occurs prior to ductile fracture.acceptedVersio

    Optimization of Waste Fuel Mix and Storage of Imported Waste Fuel

    No full text
    Fjärrvärmebranschen i Sverige har sedan mitten av 1990-talet varit i en stagnationsfas, där mängden producerad och förbrukad energi i stort sett varit konstant, trots stora investeringar i fjärrvärmenätet. Samtidigt har den höga andelen återvinning gjort att det råder brist på avfallsbränsle till energiåtervinning i Sverige. I kombination med hög konkurrens om avfallsbränslet har detta medfört att aktörerna på marknaden tvingats se sig om efter nya vägar att tillfredsställa behovet av bränsle, vilket lett till att det idag importeras stora mängder avfall för energiåtervinning från utlandet. Vid Vattenfalls fjärrvärmeverk i Uppsala har det mellan åren 2006-2013 återvunnits i snitt drygt 360 000 ton avfall per år. En stor del av detta hämtas in från lokala kunder, både kommuner och privata aktörer, men man har på senare tid även behövt börja importera avfall för att tillfredsställa energibehovet. Vattenfall i Uppsala har valt att framför allt rikta blickarna mot de brittiska öarna, varifrån avfall levereras med fartyg till hamnen i Hargshamn. Anläggningen består av tre förbränningsugnar, block 1, 4 och 5, där block 1 och 4 har en gemensam bunker där avfall förvaras innan förbränning, och den nyare block 5 har en egen bunker. I detta arbete har ett planeringsverktyg skapats i Microsoft Excel. Planeringsverktyget, Fuel Logistics Optimal Planner (FLOP), använder linjärprogrammering för att generera en optimal avfallsblandning som givet ugnarnas effekt maximerar anläggningens intäkter från kunderna. Det ger även svar på frågorna i vilken bunker en given kund ska tippa sitt avfall en given vecka, ger en optimal lagernivå för lagret i Hargshamn, samt information om under vilka veckor båtar med avfall bör anlända hamnen. FLOP stöttar logistikansvarige vid anläggningen i arbetet att skapa en veckoplanering som ligger till grund för hur mycket avfall som ska beställas från de individuella kunderna under nästkommande vecka. En jämförelse mot planeringen och utfallet för 2013 visar att FLOP genererar 2,97 % högre intäkter än den tidigare planeringen, och 0,17 % högre intäkter gentemot det verkliga utfallet för året. Detta trots att en ugn, block 3, togs ur bruk under året och således inte används i FLOP. Under 2013 stod block 3 för ungefär 3,4 % av all förbränning som skedde vid anläggningen.The first district heating-system in Sweden was implemented in the city of Karlstad in 1948 and the favorable environment for this technology lead to a quick expansion that lasted all the way to the mid 1990’s. Since then, however, the industry has stagnated due to climate change, an increase in energy efficient buildings and market saturation. This has led to the need for new strategies for the parties involved with district heating. In Sweden, many of the incinerators used for district heating use waste fuel as the main fuel source. The increased recycling of mainly household waste and the high competition on the waste incineration market has forced the affected parties to look abroad for waste fuel. Vattenfall’s waste incineration plant in Uppsala uses waste fuel and peat as main fuel for the incinerators, and between the years 2006-2013 the average annual amount of waste fuel incinerated amounted to around 360 000 metric tons. There are three incinerators, block 1, 4 and 5, connected to two bunkers storing waste fuel. Blocks 1 and 4 get their fuel from one bunker, and the newer block 5 has its own bunker attached. From the bunkers, the fuel is distributed to the incinerators by an overhead crane. The fuel is brought in from local customers at the customer’s expense for energy recovery. On top of this, Vattenfall also owns a storage facility in Hargshamn, to which it imports waste fuel from customers predominantly from the British Isles. Vattenfall then transports this waste fuel to the incineration plant whenever there is a shortage of fuel from local customers. Today, the logistics manager at the facility receives a yearly plan of all the local, contracted customers with information on how much waste each individual customer should deliver each month of the year. Every week, the logistics manager then breaks down this plan into a weekly plan, before sending out an order to each customer detailing how much waste they are expected to deliver during the subsequent week. The customers then deliver the specified amount of waste and tip it into either of the two bunkers at the facility. If one bunker is being utilized more than the other, the operators of the overhead cranes can signal to the drivers of the waste fuel trucks not to use that bunker for the time being. It is also up to the operators to make sure they feed the incinerators with an appropriate mix of fuel to keep the incinerators operating at a suitable rate. In this work, we have created a planning tool, Fuel Logistics Optimal Planner (FLOP), using Microsoft Excel and the OpenSolver add-in to yield an optimal fuel mix in the respective bunkers in regard to maximizing the overall revenue from the customers. FLOP also presents the user with an optimal storage level of waste fuel at the storage facility in Hargshamn, and informs the logistics manager about which weeks new shipments of waste fuel should arrive at the warehouse. A linear programming model was created to answer these questions. The model is based on the blending problem to get the optimal waste fuel mix to the bunkers, but it has also been influenced by the inventory management problem to make sure the storage level in Hargshamn is optimal. Backtesting FLOP against the planned and actual revenue of 2013 shows that FLOP increases the planned revenue by 2.97 % and surpasses the actual revenue by 0.17 %. During parts of 2013 a fourth incinerator, block 3, was operative at the plant, responsible for about 3.4 % of the total weight of waste incinerated. This incinerator has been omitted in the comparison
    corecore