413 research outputs found
Dielectric properties of Granodiorite partially saturated with water and its correlation to the detection of seismic electric signals
Transient electric signals emitted prior to earthquake occurrence are
recorded at certain sites in the Earth's crust termed sensitive. These field
observations enforce the laboratory investigation of the dielectric response of
rocks forming these localities. The dielectric relaxation of granodiorite rock
coming from such a sensitive locality (Keratea, Greece) reveals, through
complex impedance spectroscopy, that the activation volume for relaxation of
this rock is negative which so far has been reported only rarely. This result,
however, supports a theoretical model on the pre-seismic electric signals and
is likely to be correlated with the sensitivity of the site and hence with the
selectivity
Negative activation volume for dielectric relaxation in hydrated rocks
Negative defect activation volumes are extremely rare in solids. Here, we
report for the first time that this holds in a couple of hydrated rocks for
dielectric relaxation by exploring the complex impedance spectra at various
pressures and temperatures. The present findings mean that the relaxation time
of the relevant relaxation mechanisms decreases upon increasing pressure, thus
it may become too short at higher pressure and hence lead to the emission of
transient electric signals before fracture. This may constitute the
long-standing laboratory confirmation for the explanation of the generation of
electric signals prior to an earthquake, as recently pointed out by Uyeda et al
[Tectonophysics 470 (2009) 205-213]
and Polarizabilities from {} Data on the Base of S-Matrix Approach
We suggest the most model-independent and simple description of the
process near threshold in framework of S-matrix
approach. The amplitudes contain the pion polarizabilities and rather
restricted information about interaction. Application of these
formulae for description of MARK-II \cite{M2} and Crystal Ball \cite{CB} data
gives: ,
(in units system ) at the experimental values of scattering lengths. Both
values are compartible with current algebra predictions.Comment: LaTeX, 14 pages plus 6 figures (not included, available upon request)
, ISU-IAP.Th93-03, Irkuts
Structure and Magnetization of Two-Dimensional Vortex Arrays in the Presence of Periodic Pinning
Ground-state properties of a two-dimensional system of superconducting
vortices in the presence of a periodic array of strong pinning centers are
studied analytically and numerically. The ground states of the vortex system at
different filling ratios are found using a simple geometric argument under the
assumption that the penetration depth is much smaller than the spacing of the
pin lattice. The results of this calculation are confirmed by numerical studies
in which simulated annealing is used to locate the ground states of the vortex
system. The zero-temperature equilibrium magnetization as a function of the
applied field is obtained by numerically calculating the energy of the ground
state for a large number of closely spaced filling ratios. The results show
interesting commensurability effects such as plateaus in the B-H diagram at
simple fractional filling ratios.Comment: 12 pages, 19 figures, submitted for publicatio
Transverse Phase Locking for Vortex Motion in Square and Triangular Pinning Arrays
We analyze transverse phase locking for vortex motion in a superconductor
with a longitudinal DC drive and a transverse AC drive. For both square and
triangular arrays we observe a variety of fractional phase locking steps in the
velocity versus DC drive which correspond to stable vortex orbits. The locking
steps are more pronounced for the triangular arrays which is due to the fact
that the vortex motion has a periodic transverse velocity component even for
zero transverse AC drive. All the steps increase monotonically in width with AC
amplitude. We confirm that the width of some fractional steps in the square
arrays scales as the square of the AC driving amplitude. In addition we
demonstrate scaling in the velocity versus applied DC driving curves at
depinning and on the main step, similar to that seen for phase locking in
charge-density wave systems. The phase locking steps are most prominent for
commensurate vortex fillings where the interstitial vortices form symmetrical
ground states. For increasing temperature, the fractional steps are washed out
very quickly, while the main step gains a linear component and disappears at
melting. For triangular pinning arrays we again observe transverse phase
locking, with the main and several of the fractional step widths scaling
linearly with AC amplitude.Comment: 10 pages, 14 postscript figure
Commensurate and Incommensurate Vortex Lattice Melting in Periodic Pinning Arrays
We examine the melting of commensurate and incommensurate vortex lattices
interacting with square pinning arrays through the use of numerical
simulations. For weak pinning strength in the commensurate case we observe an
order-order transition from a commensurate square vortex lattice to a
triangular floating solid phase as a function of temperature. This floating
solid phase melts into a liquid at still higher temperature. For strong pinning
there is only a single transition from the square pinned lattice to the liquid
state. For strong pinning in the incommensurate case, we observe a multi-stage
melting in which the interstitial vortices become mobile first, followed by the
melting of the entire lattice, consistent with recent imaging experiments. The
initial motion of vortices in the incommensurate phase occurs by an exchange
process of interstitial vortices with vortices located at the pinning sites. We
have also examined the vortex melting behavior for higher matching fields and
find that a coexistence of a commensurate pinned vortex lattice with an
interstitial vortex liquid occurs while at higher temperatures the entire
vortex lattice melts. For triangular arrays at incommensurate fields higher
than the first matching field we observe that the initial vortex motion can
occur through a novel correlated ring excitation where a number of vortices can
rotate around a pinned vortex. We also discuss the relevance of our results to
recent experiments of colloidal particles interacting with periodic trap
arrays.Comment: 8 figure
Ising model on 3D random lattices: A Monte Carlo study
We report single-cluster Monte Carlo simulations of the Ising model on
three-dimensional Poissonian random lattices with up to 128,000 approx. 503
sites which are linked together according to the Voronoi/Delaunay prescription.
For each lattice size quenched averages are performed over 96 realizations. By
using reweighting techniques and finite-size scaling analyses we investigate
the critical properties of the model in the close vicinity of the phase
transition point. Our random lattice data provide strong evidence that, for the
available system sizes, the resulting effective critical exponents are
indistinguishable from recent high-precision estimates obtained in Monte Carlo
studies of the Ising model and \phi^4 field theory on three-dimensional regular
cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
The Idea of Social Life
This paper reclaims the idea that human society is a form of life, an idea once vibrant in the work of Toennies, Durkheim, Simmel, Le Bon, Kroeber, Freud, Bion, and Follett but moribund today. Despite current disparagements, this idea remains the only and best answer to our primary experience of society as vital feeling. The main obstacle to conceiving society as a life is linguistic; the logical form of life is incommensurate with the logical form of language. However, it is possible to extend our conceptual reach by appealing to alternative symbolisms more congenial to living form such as, and especially, art.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68336/2/10.1177_004839319502500201.pd
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …