We report single-cluster Monte Carlo simulations of the Ising model on
three-dimensional Poissonian random lattices with up to 128,000 approx. 503
sites which are linked together according to the Voronoi/Delaunay prescription.
For each lattice size quenched averages are performed over 96 realizations. By
using reweighting techniques and finite-size scaling analyses we investigate
the critical properties of the model in the close vicinity of the phase
transition point. Our random lattice data provide strong evidence that, for the
available system sizes, the resulting effective critical exponents are
indistinguishable from recent high-precision estimates obtained in Monte Carlo
studies of the Ising model and \phi^4 field theory on three-dimensional regular
cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure