724 research outputs found

    Repeated, Selection-Driven Genome Reduction of Accessory Genes in Experimental Populations

    Get PDF
    Genome reduction has been observed in many bacterial lineages that have adapted to specialized environments. The extreme genome degradation seen for obligate pathogens and symbionts appears to be dominated by genetic drift. In contrast, for free-living organisms with reduced genomes, the dominant force is proposed to be direct selection for smaller, streamlined genomes. Most variation in gene content for these free-living species is of “accessory” genes, which are commonly gained as large chromosomal islands that are adaptive for specialized traits such as pathogenicity. It is generally unclear, however, whether the process of accessory gene loss is largely driven by drift or selection. Here we demonstrate that selection for gene loss, and not a shortened genome, per se, drove massive, rapid reduction of accessory genes. In just 1,500 generations of experimental evolution, 80% of populations of Methylobacterium extorquens AM1 experienced nearly parallel deletions removing up to 10% of the genome from a megaplasmid present in this strain. The absence of these deletion events in a mutation accumulation experiment suggested that selection, rather than drift, has dominated the process. Reconstructing these deletions confirmed that they were beneficial in their selective regimes, but led to decreased performance in alternative environments. These results indicate that selection can be crucial in eliminating unnecessary genes during the early stages of adaptation to a specialized environment

    Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.

    Get PDF
    INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study

    Otitis media in young Aboriginal children from remote communities in Northern and Central Australia: a cross-sectional survey

    Get PDF
    BACKGROUND: Middle ear disease (otitis media) is common and frequently severe in Australian Aboriginal children. There have not been any recent large-scale surveys using clear definitions and a standardised middle ear assessment. The aim of the study was to determine the prevalence of middle ear disease (otitis media) in a high-risk population of young Aboriginal children from remote communities in Northern and Central Australia. METHODS: 709 Aboriginal children aged 6–30 months living in 29 communities from 4 health regions participated in the study between May and November 2001. Otitis media (OM) and perforation of the tympanic membrane (TM) were diagnosed by tympanometry, pneumatic otoscopy, and video-otoscopy. We used otoscopic criteria (bulging TM or recent perforation) to diagnose acute otitis media. RESULTS: 914 children were eligible to participate in the study and 709 were assessed (78%). Otitis media affected nearly all children (91%, 95%CI 88, 94). Overall prevalence estimates adjusted for clustering by community were: 10% (95%CI 8, 12) for unilateral otitis media with effusion (OME); 31% (95%CI 27, 34) for bilateral OME; 26% (95%CI 23, 30) for acute otitis media without perforation (AOM/woP); 7% (95%CI 4, 9) for AOM with perforation (AOM/wiP); 2% (95%CI 1, 3) for dry perforation; and 15% (95%CI 11, 19) for chronic suppurative otitis media (CSOM). The perforation prevalence ranged from 0–60% between communities and from 19–33% between regions. Perforations of the tympanic membrane affected 40% of children in their first 18 months of life. These were not always persistent. CONCLUSION: Overall, 1 in every 2 children examined had otoscopic signs consistent with suppurative ear disease and 1 in 4 children had a perforated tympanic membrane. Some of the children with intact tympanic membranes had experienced a perforation that healed before the survey. In this high-risk population, high rates of tympanic perforation were associated with high rates of bulging of the tympanic membrane

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont

    Get PDF
    The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment

    Towards a pathway definition of Parkinson’s disease: a complex disorder with links to cancer, diabetes and inflammation

    Get PDF
    We have previously established a first whole genome transcriptomic profile of sporadic Parkinson’s disease (PD). After extensive brain tissue-based validation combined with cycles of iterative data analysis and by focusing on the most comparable cases of the cohort, we have refined our analysis and established a list of 892 highly dysregulated priority genes that are considered to form the core of the diseased Parkinsonian metabolic network. The substantia nigra pathways, now under scrutiny, contain more than 100 genes whose association with PD is known from the literature. Of those, more than 40 genes belong to the highly significantly dysregulated group identified in our dataset. Apart from the complete list of 892 priority genes, we present pathways revealing PD ‘hub’ as well as ‘peripheral’ network genes. The latter include Lewy body components or interact with known PD genes. Biological associations of PD with cancer, diabetes and inflammation are discussed and interactions of the priority genes with several drugs are provided. Our study illustrates the value of rigorous clinico-pathological correlation when analysing high-throughput data to make optimal use of the histopathological phenome, or morphonome which currently serves as the key diagnostic reference for most human diseases. The need for systematic human tissue banking, following the highest possible professional and ethical standard to enable sustainability, becomes evident

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Maternal Environmental Contribution to Adult Sensitivity and Resistance to Obesity in Long Evans Rats

    Get PDF
    The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity.On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored.During the suckling period, the pups' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term.The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the metabolic syndrome

    Screening for atrial fibrillation – a cross-sectional survey of healthcare professionals in primary care

    Get PDF
    Introduction: Screening for atrial fibrillation (AF) in primary care has been recommended; however, the views of healthcare professionals (HCPs) are not known. This study aimed to determine the opinions of HCP about the feasibility of implementing screening within a primary care setting. Methods: A cross-sectional mixed methods census survey of 418 HCPs from 59 inner-city practices (Nottingham, UK) was conducted between October-December 2014. Postal and web-surveys ascertained data on existing methods, knowledge, skills, attitudes, barriers and facilitators to AF screening using Likert scale and open-ended questions. Responses, categorized according to HCP group, were summarized using proportions, adjusting for clustering by practice, with 95% C.Is and free-text responses using thematic analysis. Results: At least one General Practitioner (GP) responded from 48 (81%) practices. There were 212/418 (51%) respondents; 118/229 GPs, 67/129 nurses [50 practice nurses; 17 Nurse Practitioners (NPs)], 27/60 healthcare assistants (HCAs). 39/48 (81%) practices had an ECG machine and diagnosed AF in-house. Non-GP HCPs reported having less knowledge about ECG interpretation, diagnosing and treating AF than GPs. A greater proportion of non-GP HCPs reported they would benefit from ECG training specifically for AF diagnosis than GPs [proportion (95% CI) GPs: 11.9% (6.8–20.0); HCAs: 37.0% (21.7–55.5); nurses: 44.0% (30.0–59.0); NPs 41.2% (21.9–63.7)]. Barriers included time, workload and capacity to undertake screening activities, although training to diagnose and manage AF was a required facilitator. Conclusion: Inner-city general practices were found to have adequate access to resources for AF screening. There is enthusiasm by non-GP HCPs to up-skill in the diagnosis and management of AF and they may have a role in future AF screening. However, organisational barriers, such as lack of time, staff and capacity, should be overcome for AF screening to be feasibly implemented within primary care
    corecore