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Abstract

The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal
decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal
behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In
other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical
inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic
levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are
based upon a hierarchical generative model that infers the context in which movements are made. This means that we can
confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal)
model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological
responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce
pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson’s disease. We use
these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different
ways at the behavioural level.
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Introduction

This article is about set switching and action selection during

the execution of cued responses. It offers a straightforward account

of dopamine in optimising behaviour in the context of (Bayes-

optimal) predictive coding. Our focus is on the consequences of

depleting dopamine and simulating perseveration that is charac-

teristic of Parkinson’s disease, using synthetic neuronal models

based upon active inference [1]. In brief, the emergent role of

dopamine is to report the precision or salience of perceptual cues

that portend a predictable sequence of sensorimotor events. In this

sense, it mediates the affordance of cues that elicit motor

behaviour [2]; in much the same way that attention mediates

the salience of cues in the perceptual domain. Gibson defined

affordances as action possibilities latent in the environment [3],

objectively measurable and independent of the ability to recognize

them but always in relation to the actor [4]. Affordance is

therefore an attribute of a cue and has to be inferred. Crucially, in

this paper, inferring that an object has affordance necessarily

entails an action. We hope to establish a central role for dopamine

in this inference and implicit action selection.

Dopamine has been implicated in a bewildering variety of

processes and pathologies in the human brain; ranging from

cortical excitability to attentional deficits [5], [6]; from motor

control to akinesia and set switching deficits in Parkinson’s disease

[7], [8], [9]; from working memory to schizophrenia [10], [11];

from reinforcement learning to addiction [12], [13]; from

executive function to age-related cognitive decline [14]; from

reward prediction to failures of incentive salience [15], [16]; from

exploration to psychomotor poverty [17]. In fact, it is difficult to

find an area of neuroscience that does not implicate dopamine; for

example, it has key roles in mood, sleep, nociception, and

prolactin production. In terms of its functional or computational

roles, it has been suggested that dopamine reports reward

prediction errors, hedonic value, incentive salience, novelty, and

so on. Many accounts appeal to optimal decision theory and

reinforcement learning to understand the putative role of

dopamine in formal terms [18], [19], [20], [21]. These treatments

rest on the assumption that behaviour is optimal in relation to

some reward or cost function and invoke various heuristics from

control theory (e.g., dynamic programming) to explain the

computational role of dopamine.

This article takes a different view and considers that behaviour

is Bayes-optimal in the sense that it maximises the Bayesian

evidence for an actor’s model of the world or, equivalently,

minimises surprise. We have formulated this as active inference in a

series of previous papers [1], [22], [23]. Active inference can be

seen as an embodied (enactivist) form of predictive coding, in

which perception minimises exteroceptive prediction errors and

action minimises proprioceptive prediction errors. Put simply,

active inference is predictive coding with classical motor reflexes.

In this setting, cost functions are replaced by surprise or prediction

error, in the sense that the only optimal behaviour is a behaviour

that brings about expected outcomes (i.e., minimises surprise as
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opposed to cost). This ensures that agents avoid potentially

harmful or surprising exchanges with the environment and equips

them with a physiological and ethological homoeostasis. Note that

this does impose constraints on behaviour, since appropriate priors

can replicate the effect of any cost function [1]. In short, rewards

are just familiar sensory states. This perspective has three

advantages over reward-based accounts: first, it resolves the

tautology inherent in the notion of reward. This tautology follows

from the fact that reward is used to explain reward seeking

behaviour [24], while at the same time being defined in terms of its

ability to elicit reward seeking behaviour. Second, it dispenses with

the intractable solutions of control theory problems (e.g., Bellman

optimality equations) that are necessary to optimise reward or cost

functions [25], [26], [27]. Finally, and central to this paper, it

provides a novel perspective on the role of dopamine that accounts

for its apparently diverse roles in terms of a single mechanism,

operating at different levels of the sensorimotor hierarchy.

The Bayesian perspective suggests that there are only two sorts

of things that need to be inferred about the world; namely, the

state of the world and uncertainty about that state. We have

suggested that predicted states of the world are encoded in terms of

synaptic activity, while uncertainty is encoded by synaptic gain

that encodes the precision (inverse amplitude or variance) of

random fluctuations about predicted states [28]. If true, this means

that modulators of synaptic gain (like dopamine) do not report

perceptual content but the context in which percepts are formed.

In other words, dopamine reports the precision or salience of

sensorimotor constructs (representations) encoded by the activity

of the synapses they modulate. This leads to a view of

dopaminergic projections that select salient processing channels

and associated actions. Physiologically, this is compatible with

short latency dopamine bursts in the basal ganglia that occur after

any salient event, whether rewarding or not [29]. In this view,

dopaminergic discharges do not signify reward prediction errors

but are an integral part of Bayes-optimal perception and

sensorimotor integration: they respond to salient or precise cues

that portend a predictable sequence of sensorimotor events that

will be registered by specific proprioceptive and exteroceptive

processing channels. Crucially, these responses will appear to be

reward-related, because they precede sensorimotor sequences that

lead to a rewarding (familiar) state. In other words, if a sequence of

choices is predictable they lead to unsurprising outcomes, which

are, by definition, rewarding. However, the agent may have no

concept or representation of reward; it is just doing what it expects

to do in the context established by the pattern of dopamine firing.

The motivation and mechanisms behind the role of dopamine

considered in this paper are exactly the same as we have proposed

for the attentional modulation of postsynaptic gain in sensory

processing [30]. Both attentional modulation and dopaminergic

gating may represent a Bayes-optimal encoding of precision that

enhances the processing of particular sensory representations by

selectively biasing bottom-up sensory information (prediction

errors). In other words, it confers salience on attended represen-

tations [31], [32], [33], [34], [35], [36], [37]. The specific role of

dopaminergic neurotransmission in behaviour (as opposed to

perception) may be explained by the regional specificity of its

projection fields (and postsynaptic receptor subtypes) that are

mainly confined to cortical and subcortical structures concerned

with predicting choices and motor responses [38]. This is

important because it means that dopamine may be exclusively

concerned with salient representations that have affordance; in

other words, sensorimotor representations that predict both

perceptual and behavioural consequences. If true, this means

dopamine has a crucial role in biasing sensorimotor integration

and action selection. More formally, dopamine is in a position to

select the proprioceptive and exteroceptive signals (prediction

errors) that compete for higher level explanation by controlling

their precision. This formulation sits comfortably with the

affordance competition hypothesis [2], [39] and other theoretical

accounts: for example, the uncertainty processing theory of

motivation [40], neurobiological accounts of decision-making

[41], [42] and the plurality of roles suggested by the physiology

of dopamine [43]. In particular, it draws on the same notions that

link dopamine to the encoding of uncertainty [44] and adaptive

responses to changes in neuronal signal to noise levels [45], [46].

This is because precision represents uncertainty due to random

fluctuations or noise. By associating salience with precision we can

also connect to constructs like incentive salience in psychology [47]

and aberrant salience in psychopathology [48]. Indeed, it has been

shown that action selection can be cast as signal selection using

salience to report the ‘‘propensity for selecting a given action’’

[49]. Note that precision or salience is an attribute of a

(probabilistic) representation that determines the confidence or

certainty about what is represented; where the salience of sensory

representations can be manipulated experimentally, by changing

signal to noise levels or contrast. We will see an example of this

later. Finally, the notion that dopamine modulates synaptic gain

plays a key role in several proposals. It has been argued for in [50]

and used in several Parkinson’s disease modelling papers [51,52].

In this paper, the hypothesis that dopamine release reports

precision or uncertainty is based purely on its synaptic physiology.

However, there is definitive neurophysiological evidence for this

role of dopamine [44], where, for example, dopaminergic

discharges covary with the variance or precision of juice rewards

[53]. More generally, nearly every experimental manipulation

evoking dopaminergic responses (novelty, unexpected rewards, etc)

speaks to a change in the level of precision or confidence about

subsequent contingencies. In what follows, we try to substantiate

the above ideas using theoretical arguments based upon active

inference and then illustrate their plausibility using simulations of

cued responses. These simulations are concerned with the

Author Summary

Dopamine is a neurotransmitter that has been implicated
in a wide variety of cognitive and motor functions; it is
depleted in Parkinson’s disease, disrupted in schizophrenia
and plays a central role in working memory, reinforcement
learning and other cognitive functions. In this paper,
we present a straightforward and neurophysiologically
grounded explanation for the diversity of functions and
pathologies that implicate dopamine. This explanation
rests on a principled approach to the nature of action and
perception called active inference. This approach suggests
that (Bayes) optimal perception and consequent behaviour
depends on representing uncertainty about states of the
world in terms of the precision (inverse amplitude) of their
random fluctuations. Crucially, this uncertainly can be
encoded by the same postsynaptic gain of neurons that is
modulated by dopamine. This means that changing the
levels of dopamine changes the level of uncertainty about
different representations. To substantiate this idea, we
simulate dopamine depletion in a hierarchical sensorimo-
tor network to show that a single function of dopamine
(encoding precision in terms of postsynaptic gain) is not
only sufficient to account for commonly observed
behaviours following dopamine depletion but also pro-
vides a unifying perspective on many existing theories
about dopamine.

Active Inference and Affordance

PLoS Computational Biology | www.ploscompbiol.org 2 January 2012 | Volume 8 | Issue 1 | e1002327



consequences of depleting dopaminergic neurotransmission to

illustrate its central role in action selection and set switching. They

can therefore be regarded as a very simple model of Parkinson’s

disease. This means we will not address changes in precision but

assume that the tonic activity of dopaminergic neurons encodes a

fixed level of precision or uncertainty [44], [43], [45]. Subsequent

papers will focus on the control of (phasic and tonic) dopaminergic

responses per se and will try to reproduce the empirical findings of

behavioural reinforcement paradigms, using phasic dopamine

discharges that shift striatial neurons into an up state to increase

their gain or precision [54]. Furthermore, we will restrict our

discussion to the generic effect of dopamine on postsynaptic D1

receptors located on principal cells throughout the brain [55]. This

necessarily precludes a proper consideration of the balance

between D1 and D2 receptor function and its relationship to the

functional anatomy of the basal ganglia in Parkinson’s disease

[56].

The models and methods section reviews the theory on which

subsequent simulations are based. This section presents a brief

review of the free energy principle, with a special focus on active

inference and the role of synaptic gain in encoding precision. The

basic theory and ensuing differential equations used to simulate

neuronal responses are exactly the same as those used to illustrate

perceptual inference, learning, attention and action in a series of

previous papers (Table 1). This formalism is then used to model

sequential cued movements, under normal and, in the results

section, depleted levels of dopamine. The particular simulations

used in this paper rest on prior beliefs about sensorimotor

trajectories, encoded by itinerant (wandering) dynamics in

premotor cortex. These dynamics are entrained by prediction

errors from the superior colliculus, the parietal cortex and motor

cortex, whose precision is, we assume, controlled by dopamine.

Using this architecture, we can simulate visually cued sequences of

movements and, crucially, responses to sequence violations. By

adding a further (prefrontal) level to the model, we examine how

the ability to switch from one sequence to another is compromised

when sensorimotor cues lose precision. The resulting impact on set

switching is characterised in terms of (synthetic) neuronal

responses and behavioural (reaction time and accuracy) measures.

We conclude with a discussion of the implications for dopamine in

motor control and set switching generally, and for Parkinson’s

disease specifically.

Methods

Active inference, affordance and free energy
In this section, we briefly overview the free energy principle and

active inference to frame the role of dopamine examined later.

The free energy principle proposes that the states and infrastruc-

ture of a self organising system, such as the brain, should minimise

the free energy of the sensory states it samples [57]. Free energy is

an upper bound on the surprise associated with sensory signals,

where surprise is mathematically the same as the (negative log)

Bayesian evidence for the system’s model of its world. Evidence is

just the probability of getting some data under the model of those

data. This means that minimising free energy reduces surprising

exchanges with the environment or, equivalently, maximises the

evidence for an agent’s internal model of its sensorium. This

principle entails two corollaries; the Bayesian brain hypothesis

[58], [59]; [60], [61] and active inference [1], [22], [23]. The

Bayesian brain hypothesis means that the brain will try to predict

its sensory inputs in a Bayes-optimal fashion by representing their

causes in terms of hidden states of the world. Active inference

equips the Bayesian brain with motor reflex arcs that ensure its

predictions are fulfilled (by suppressing proprioceptive prediction

errors). In active inference, behaviour emerges as natural

consequence of high-level representations (sensorimotor con-

structs) that have both sensory (exteroceptive) and motor

(proprioceptive) consequences. These constructs or representations

are maintained by bottom-up prediction errors in both modalities

and reciprocate top-down (proprioceptive) predictions to the

peripheral motor system that drive classical motor reflexes; while

top-down predictions to sensory systems play the role of corollary

discharge and suppress (exteroceptive) prediction errors.

Crucially, high-level sensorimotor representations can be

dynamic in nature, with itinerant dynamics (on attractor

manifolds) that embody prior beliefs about the sequence of

sensorimotor events or trajectories that will unfold in the near

future. These can be regarded as central pattern generators or

attractors that provide proprioceptive and sensory predictions for

sensorimotor integration; in other words, representations of

affordance [23]. The particular sequence currently active depends

upon which attractor has been selected. This selection rests upon

precise bottom-up prediction errors conveying salient sensory

information that has yet to be explained. In this scheme,

prediction errors can induce or destroy metastable attractors at

higher levels to select the trajectory that best explains sensory

input. This can be regarded as selecting an attractor with an

affordance that best explains sensory input; cf., ‘‘affordance

competition’’ in [2]. The potency with which ascending prediction

errors can select the appropriate attractor depends upon their

postsynaptic gain. This gain encodes the precision (inverse

variance) of random fluctuations about predictions. In other

words, the ability of bottom-up prediction errors to bias

competition among high level sensorimotor representations

(attractors) depends upon their precision that we presume, in this

paper, is modulated by dopamine. In the results section, we will

see an example of these dynamics and what happens when the

precision of prediction errors is reduced by (simulating) a

reduction in dopaminergic neurotransmission. We hypothesised

that this would result in a failure of set switching and the

perseveration of sensorimotor dynamics of the sort seen in

Parkinson’s disease [7], [62], [63]. In what follows, we will unpack

the above summary in slightly more formal terms:

Table 1. Processes and paradigms that have been modeled
using the scheme in this paper.

Domain Process or paradigm

Perception Perceptual categorization (bird songs) [70]

Novelty and omission-related responses [70]

Sensory learning Perceptual learning (mismatch negativity) [139]

Attention Attention and the Posner paradigm [30]

Attention and biased competition [30]

Motor control Retinal stabilization and oculomotor reflexes [22]

Saccadic eye movements and cued reaching [22]

Motor trajectories and place cells [23]

Sensorimotor integration Bayes-optimal sensorimotor integration [22]

Behavior Heuristics and dynamical systems theory [140]

Goal-directed behavior [1]

Action observation Action observation and mirror neurons [23]

doi:10.1371/journal.pcbi.1002327.t001
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Generative models and the Bayesian brain
The equations and simulations used in this paper may appear a

bit complicated and ad hoc; however, they are based on just three

assumptions:

N The brain minimises the free energy of sensory inputs defined

by a generative model.

N The generative model used by the brain is hierarchical,

nonlinear and dynamic.

N Neuronal firing rates encode the most likely state of the world,

under this model.

The first assumption is the free energy principle, which leads to

active inference when considering both representations and action.

This principle has to be true, in the sense that a failure to minimise

free energy means that the brain will entertain increasingly

surprising sensations and, at some point, will cease to exist in an

ergodic sense. The second assumption is motivated easily by

noting that the world is both dynamic and nonlinear. Hierarchical

causal structure emerges inevitably from a separation of temporal

scales. This can be seen most clearly in the slaving principle from

statistical physics [64,65], where slow ordered dynamics emerge at

a macroscopic scale and enslave fast fluctuations at a microscopic

scale. Finally, the third assumption follows from the first, under the

constraint that probabilistic representations are encoded by a

minimum number of biophysical variables. This leads to

something called the Laplace assumption, in which the probability

density function over hidden states is Gaussian and can be

encoded by its mean or expectation. In terms of neural codes, this

is referred to this as the Laplace code and is arguably the simplest

and most flexible of all neural codes [66].

Given these three assumptions, one can simulate a whole variety

of situations and processes by simply specifying the particular

equations that constitute the generative model. The resulting

perception and action is specified completely by the above

assumptions and can be implemented in a biologically plausible

way as described in previous applications listed in Table 1. In brief,

these simulations use differential equations that minimise the free

energy of sensory input using a generalised gradient descent [67].

_~mm~mm~D~mm{
L
L~mm
Fm(~ss,~mm)

_aa~{
L
La
Fm(~ss,~mm)

ð1Þ

These coupled differential equations describe perception and action

respectively and just say that internal brain states and action change

in the direction that reduces free energy. The first is known as

(generalised) predictive coding and has the same form as Bayesian

(e.g., Kalman-Bucy) filters used in time series analysis; see also [68].

The free energy Fm(~ss,~mm) depends on three things; sensory signals

~ss(t), conditional expectations or representations ~mm(t) and a model

m. The model defines how expectations about states of the world

conspire to produce sensory input. In neurobiological formulations,

these expectations or predictions are associated with neuronal

activity and the model comprises a connectivity or network

architecture. The,notation denotes variables in generalised

coordinates of motion that include velocity, acceleration, jerk and

so on; ~mm~½m,m’,m’’, . . .�T . The first term in Equation 1 is a

prediction based upon a matrix differential operator D that

returns the generalised motion of the expectation, such that

D~mm~½m’,m’’,m’’’, . . .�T . The second term is usually expressed as a

mixture of prediction errors that ensures the changes in conditional

expectations are Bayes-optimal predictions about hidden states of the

world. The second differential equation says that action also mini-

mises free energy. The differential equations are coupled because

sensory input depends upon action, which depends upon perception

through the conditional expectations. This circular dependency leads

to a sampling of sensory input that is both predicted and predictable,

thereby minimising free energy and surprise.

To perform neuronal simulations under this framework it is only

necessary to integrate or solve Equation 1 to simulate neuronal

dynamics that encode the conditional predictions and ensuing

action. Conditional predictions depend upon the brain’s genera-

tive model of the world, which we assume has the following

(hierarchical) form

s(t)~f (1,v)(x(1),v(1))zv(1,v)(x(1),v(1))

_xx(1)~f (1,x)(x(1),v(1))zv(1,x)(x(1),v(1))

..

.

v(i{1)~f (i,v)(x(i),v(i))zv(i,v)(x(i),v(i))

_xx(i)~f (i,x)(x(i),v(i))zv(i,x)(x(i),v(i))

ð2Þ

This equation is just a way of writing down a model that relates

various quantities in the world probabilistically in terms of their

generalised motion. Here, (f (i,x),f (i,v)) are nonlinear functions of

hidden states and causes (x(t),v(t)) that generate sensory inputs

s(t) at the first (lowest) level. Random fluctuations (v(i,x),v(i,v)) on

the motion of hidden states and causes are conditionally

independent and enter each level of the hierarchy. It is these that

make the model probabilistic. They play the role of sensory noise

at the first level and induce uncertainty about states at higher

levels. The (inverse) amplitudes of these random fluctuations are

quantified by their precisions; ( ~PP(i,x), ~PP(i,v)), which we assume to

be fixed in this paper and encoded by dopamine. Hidden causes

v(t)~(v(1),v(2),: . . . ) link hierarchical levels, whereas hidden states

x(t)~(x(1),x(2),: . . . ) link dynamics over time. Hidden states and

causes are abstract quantities (like the motion of an object in the

field of view) that the brain uses to explain or predict sensations. In

this hierarchical model, the output of one level acts as an input to

the next. This input can produce complicated (generalised)

convolutions with deep (hierarchical) structure. We will see an

example of this later.

Perception and action under predictive coding
Given the form of the generative model (Equation 2) we can

now write down the differential equations (Equation 1) describing

neuronal dynamics in terms of (precision-weighted) prediction

errors on the hidden causes and states (~ee(i,x),~ee(i,v)). These errors

represent the difference between conditional expectations

(~mm(i,x),~mm(i,v)) and predicted values, under the generative model:

_~mm~mm
(i,v)

~D~mm(i,v)z
L~ff (i,v)

L~mm(i,v)

 !T

~ee(i,v)z
L~ff (i,x)

L~mm(i,v)

 !T

~ee(i,x){~ee(iz1,v)

_~mm~mm
(i,x)

~D~mm(i,x)z
L~ff (i,v)

L~mm(i,x)

 !T

~ee(i,v)z
L~ff (i,x)

L~mm(i,x)

 !T

~ee(i,x){DT~ee(i,x)

~ee(i,v)~ ~PP(i,v)(~mm(i{1,v){~ff (i,v))

~ee(i,x)~ ~PP(i,x)(D~mm(i,x){~ff (i,x))

ð3Þ
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At the lowest level of the hierarchy, conditional expectations are

replaced by sensory input. This equation can be derived fairly

easily by computing the free energy for the hierarchical model in

Equation 2 and inserting its gradients into Equation 1. What we

end up with is a relatively simple update scheme, in which

conditional expectations are driven by a mixture of prediction

errors, where prediction errors are defined by the equations of the

generative model.

It is difficult to overstate the generality and importance of

Equation 3: its solutions grandfather nearly every known statistical

estimation scheme, under parametric assumptions about additive

or multiplicative noise [69]. These range from ordinary least

squares to advanced variational deconvolution schemes. The

resulting scheme is called generalised filtering or generalised

predictive coding [67]. In neural network terms, Equation 3 says

that error-units receive predictions from the same level and the

level above. Conversely, prediction-units are driven by prediction

errors from the same level and the level below. These constitute

bottom-up and lateral messages that drive conditional expectations

towards a better prediction to reduce the prediction error in the

level below. This is the essence of recurrent message passing

between hierarchical levels to optimise free energy or suppress

prediction error: see [70], for a more detailed discussion. In

neurobiological implementations of this scheme, the sources of

bottom-up prediction errors, in the cortex, are thought to be

superficial pyramidal cells that send forward connections to higher

cortical areas. Conversely, predictions are conveyed from deep

pyramidal cells, by backward connections, to target (polysynapti-

cally) the superficial pyramidal cells encoding prediction error

[71], [70]. The laminar specificity of the cells of origin of

predictions and prediction errors becomes relevant when exam-

ining the putative role of dopamine in the encoding of precision.

The neurobiology of precision
Equation 3 shows that precision modulates the responses of

prediction error units to their presynaptic inputs. Here, we

associate precision with dopaminergic neuromodulation of these

responses. The action of dopamine is mediated by a family of

transmembrane G protein-coupled receptors [72] encoded by at

least five dopamine receptor genes [73]. Dopamine receptors are

found throughout the soma and dendrites of neurons but ultra-

structural and biochemical evidence suggests that they are

concentrated in dendritic spines that express glutamatergic

synapses [74], [75]. Postsynaptic D1 and D2 receptors are

therefore strategically positioned to control the excitability and

synaptic properties of spines ‘‘with remarkable precision and

versatility’’ [76].

Although dopamine appears to be a natural candidate to

modulate principal cells reporting prediction error, Equation 3

does not tell us whether prediction errors are modulated before or

after they are computed. Both mechanisms are biologically

plausible: for example, superficial pyramidal cells encoding

prediction error could be modulated by D1 receptors on the

soma or initial segment, after the integration of signals subtending

prediction errors in the dendritic tree. Conversely, precision

dependent modulation could be applied at a synaptic level to all

presynaptic inputs. For dopamine, the balance of evidence points

to the latter mechanism [77]:

Dopamine innervation in the human prefrontal cortex exhibits

a distinct bilaminar distribution with dense bands of fibres in the

superficial and deep layers [78], [74]. Although some evidence

suggests that dopaminergic markers are more concentrated in

deep layers [79], [80], other studies report a higher concentration

in supragranular layers [81]. These differences may be due to

regional and species differences [82]. Here, we will focus on

dopaminergic modulation of cells in the supragranular layers,

because superficial pyramidal cells are thought to report prediction

error [71]. Dopamine axons form symmetric synapses, predom-

inantly on the spines of pyramidal cells. In many cases, the same

spine expresses an asymmetric (excitatory) synapse. In human and

monkey prefrontal cortex, the dopamine D1-specific ligand, 3H-

SCH23390, and the D2-specific ligand, H3-raclopride, label

binding sites that mirror the densest dopamine innervation [78],

[83]. This suggests that the primary role of D1 receptors is to

modulate presynaptic input to pyramidal cells at the dendritic level

[77], [74]. In terms of the implicit computational architecture, we

can therefore assume that dopamine gates or modulates the

dendritic responses of superficial pyramidal cells, such that

dopamine selects afferents encoding sensory information (predic-

tion error) in proportion to its precision.

Figure 1 provides a schematic of the neuronal circuitry implied

by this assumption, in which dopamine modulates doubly-

innervated spines of superficial pyramidal cells receiving excitatory

and inhibitory presynaptic inputs [84]; corresponding to condi-

tional expectations and their predictions respectively. The

opposing effects of these presynaptic inputs on postsynaptic

depolarisation form a prediction error signal that is modulated

at the level of the dendritic spine by dopamine. In this scheme, the

tonic firing of a particular dopaminergic cell or population

encodes the precision or salience of the information (prediction

error) conveyed by the cells that it targets. One might imagine that

phasic discharges report changes in the current context and signal

a change in the relative precision (uncertainty) over different

sensory channels and conditional predictions. In this paper, we will

assume that the precision at each hierarchical level is constant and

address the (phasic) control of dopaminergic activity in terms of

optimisation of (state-dependent) precision elsewhere.

Action and affordance
Clearly, in sensorimotor hierarchies [85], the relative levels of

neuromodulatory gating (precision) at different levels can have a

profound effect on perception and behaviour, because it will select

particular processing channels and change the balance between

bottom-up sensory information and top-down prior expectations.

In hierarchical models, these prior expectations are called empirical

priors, because they are optimised in relation to sensory data.

Furthermore, precision or neuromodulation of synaptic gain will

affect action and motor control, because action is driven by

(proprioceptive) prediction errors at the sensory level that have

their own gain or precision:

_aa~{
L
La
Fm~{

L~ss

La

� �T

~PP(1,v)~ee(1,v) ð4Þ

This follows because the only way that action can minimise free

energy is to change sensory prediction errors by selecting which

sensory signals are sampled. As noted above, the ensuing

suppression of proprioceptive prediction errors can be thought

of in terms of classical motor reflex arcs: see [22] for details.

Affordance is generally conceived of as the opportunities for

action offered by the environment to an agent [4]. This depends

on both the environment and the nature of the actor. For example,

an axe only affords the possibility of use when it can be wielded. In

this paper, affordance is an attribute of amodal representations at

higher hierarchical levels that make both sensory and motor

predictions (an ‘axe’ entails predictions not only about how it looks

or feels, but also the kinaesthetic consequences of wielding it).

Active Inference and Affordance
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Conditional expectations or representations with affordance elicit

behaviour by sending top-down predictions down the hierarchy

that are unpacked into proprioceptive predictions at the level of

the cranial nerve nuclei and spinal-cord. These engage classical

reflex arcs to produce the predicted motor trajectory. The action

of dopamine in this context is to modulate or enable the salience of

representations that have affordance, and hence the probability

they will be enacted.

Summary
In summary, we have derived equations for the dynamics of

perception and action using a free energy formulation of adaptive

(Bayes-optimal) exchanges with the world and a generative model

that is both generic and biologically plausible. In what follows, we

use Equations 3 and 4 to simulate neuronal and behavioural

responses. A technical treatment of the material above will be

found in [67], which provides the details of the scheme used to

integrate (solve) Equation 1 to produce the simulations considered

next.

A generative model of cued responses
The preceding scheme allows one to simulate (Bayes-optimal)

responses in terms of neuronal activity and motor behaviour,

under any plausible generative model. Here, we consider a

particular model, described in terms of the functions in Equation 2

that leads to a sequence of pointing movements, elicited by a

sequence of visual cues. This model of sensorimotor integration

provides the basis for simple simulated lesion experiments, in

which we can deplete levels of simulated dopamine (precision) in

different parts of the brain, and examine the consequences.

Because the differential equations governing perception and

action are coupled (Equation 1), we need to specify two mappings:

the generative model used by the brain, whose inversion

maps from sensations to action, and the process by which action

Figure 1. This figure provides a schematic overview of the message passing scheme implied by Equation 3. In this scheme, neurons are
divided into prediction (black) and prediction error (red) units that pass messages to each other, within and between hierarchical levels. Superficial
pyramidal cells (red) send forward prediction errors to deep pyramidal cells (black), which reciprocate with predictions that are conveyed by
(polysynaptic) backward extrinsic connections. This process continues until the amplitude of prediction error has been minimized and the predictions
are optimized in a Bayesian sense. The prediction errors are the (precision weighted) difference between conditional expectations encoded at any
level and top down or lateral predictions. Note that there are prediction errors at every level of the hierarchy, for both hidden states and hidden
causes (and sensory states and the lowest level). The synaptic infrastructure proposed to mediate this comparison and subsequent modulation is
shown in the lower panel, in terms of a doubly-innervated synapse [84] that is gated by dopamine (cyan). Here, dopamine is delivered by en passant
synaptic boutons and postsynaptic D1 receptors have been located on a dendritic spine expressing asymmetric (excitatory) and symmetric
(inhibitory) synaptic connections. This represents the synaptic arrangements indicated by the cyan arrows in the upper panel.
doi:10.1371/journal.pcbi.1002327.g001
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produces sensations. To distinguish between real states generating

sensory information and the hidden states assumed by the

generative model, we will use bold and italic variables respectively.

Sensory input was generated using the following equations, which

constitute real world dynamics that are hidden from the agent:

s~
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sv[R2

sa[R4
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This equation specifies how hidden states in the world produce

sensory inputs and how those states change in response to action

and hidden causes. Although it may look complicated, the implicit

dynamics are very simple: The first equation expresses sensory

input as a nonlinear function of true states in the world that

comprise the position of a single jointed arm x(1)
p (t)[R2 in terms of

vertical and horizontal angles of displacement from a resting

position x(1)
p (t)~0; and the salience x(1)

a (t)[R4 of four locations in

extrinsic (visual) coordinates. Salience corresponds to appearance

of visual cues at the four locations that affords the possibility of

reaching towards them. These hidden states produce sensory

signals in a proprioceptive modality, sp(t)[R2; the location of the

arm in visual coordinates, sv(t)[R2 and the salience (e.g.,

illumination) of the four target locations sa(t)[R4. Here, we have

used a simple tangent function to model the nonlinear transfor-

mation from intrinsic (proprioceptive) to extrinsic (visual) coordi-

nates that is inherent in real motor control [86].

The second differential equation describes how changes in arm

position and target salience depend upon action and exogenous

causes respectively: the direction of the arm changes as a sigmoid

(hyperbolic tangent) function of action and decays back to its

resting position in the absence of action. The salience of each

location is increased by exogenous causes v(1)(t)[R4 that we can

use to specify the duration and sequence of (visual) cues. The

motion of the states and sensory input were subject to low levels of

noise in the simulations (with a log precision of 16).

Clearly, to integrate Equation 5 we need not only the exogenous

causes (that specify sequence of visual cues) but also action that

depends upon the perceptual inversion of a generative model. The

generative model here was chosen to include several features of

sensorimotor integration and hierarchical dynamics in the simplest

way possible. It considers the brain to model the sensory world as a

succession of unstable fixed points in some abstract state space. In

other words, the agent expects the world to change continuously,

with an itinerant (wandering) trajectory, visiting different states in

succession. These reflect prior beliefs about forthcoming sensory

events, and are encoded by differential equations that embody

metastable dynamics; e.g., winnerless competition; [87], [88]. The

resulting attractors can be thought of as central pattern generators

that can be nested hierarchically at different time scales [89] to

produce exteroceptive and proprioceptive (i.e., sensorimotor)

predictions. These predictions are entrained by perception and

prescribe motor responses through active inference. An important

aspect of these generative models is that high level dynamics

determine the context or set that engages lower-level sensorimotor

sequences. In what follows, we will exploit this hierarchical aspect

to illustrate some generic features of set switching and action

selection and how they depend on the delicate balance of precision

over different hierarchical levels.

The generative model used by our simulated agent had two

levels and the following form (a particular case of Equation 2):

s~

sp[R2

sv[R2

sa[R4

2
664

3
775~

x(1)
p

tan (x(1)
p )

exp (
1

2
x(1)

a )

2
66664

3
77775zv(1,v)

_xx(1)~
_xx(1)

p [R2

_xx(1)
a [R4

" #
~

1

2
(‘:s(x(1)

a ){ tan (x(1)
p ))

s(x(1)
a ,

1

2
v

(1)
1 )

2
664

3
775zv(1,x)

v(1)[R2~s(x(2))zv(2,v)

_xx(2)[R2~s(x(2),
1

16
)zv(2,x)

ð6Þ

At the sensory level, this model has the same form as the actual

process generating sensory information (in Equation 5), with the

exception that salience is log transformed so that it can be positive

or negative (hence the exponential function in the first equality).

However, above the sensory mapping (the first equation) the form

of a model is very different from the process generating data

(Equation 5) and embodies (formal) priors that induce a dynamic

interplay between action and perception. It is this interplay that

underlies the agent’s behaviour. Crucially, the hidden states x(1)
a

not only predict visual salience but also predict changes in

proprioception. In this sense, they become affordance states. More

specifically, the second differential equation means that the agent

expects its arm to be drawn to the location specified by a function

‘:s(x(1)
a ) of hidden affordance states, where ‘[R2|4 encodes the

location of the four targets or cues. A softmax function of hidden

affordance states s(x(1)
a ) just ensures that the hidden state with the

largest affordance predominates over the others. It is important to

note that if we did not add anything else to this generative model,

the agent would simply point to each target when it appeared; cf.,

[90]. This is because perception would infer that the affordance of

a particular target was high. The associated conditional expecta-

tions would then induce proprioceptive predictions that would be

fulfilled by action; such that the agent would point towards the

target. In an experimental setting, these prior beliefs may be

instantiated through task instructions.

However, we will consider a more sophisticated and realistic

model, in which the agent has prior beliefs about the sequence in

which targets will appear. This sort of prior belief could be

instantiated by repeated exposure to the same sequence. These

prior beliefs are encoded by the function s(x(1)
a ,

1

2
v

(1)
1 ) that

prescribes a stable heteroclinic channel or winnerless competition

among hidden affordance states. In other words, the agent believes

that the affordance of the four target locations will change

continuously, where each of the four states rises in turn, exciting

the next state and suppressing itself (see Figure 2). The speed of

these sequential dynamics is governed by the hidden cause v
(1)
1 . If

we stopped here, we would have a simple agent with a limited

repertoire of expectations that comprised a fixed sequence of

sensorimotor events. These expectations may be consistent with

the actual order of cues encountered or they may not be.
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The final part of the model endows the agent with the concept

that cues may or may not be ordered. We model this in terms of

the hidden cause that controls the speed of the sequence.

Crucially, this hidden cause is itself a softmax function of a

hidden state that is part of a slower itinerant cycle (by factor of

eight), governed by the same winnerless competition among the

hidden states; x(2)[R2. This means that, depending upon the

second level hidden states; the sequential dynamics of the hidden

affordances at the first level may or may not be engaged. The

resulting model may sound complicated; however, its complexity

lies in labelling various states of the model. The actual form of the

model is both mathematically quite simple and biologically

plausible: we have just placed a slow pattern generator on top of

a fast pattern generator and have then mapped to sensory

consequences. Both pattern generators have the same universal

form and show autonomous, metastable dynamics of the sort seen

in the real brain [87].

In summary, the agent believes that it will point towards salient

cues when they appear. Furthermore, it believes that these cues

would appear one at a time; either in a fixed (clockwise) sequence

or with no sequential contingencies. Although this is a very simple

model of the world, it allows us to demonstrate sensorimotor

integration in the context of cued motor actions, biasing of action

selection in terms of sequential anticipations and set switching that

depends upon recognising the context (sequential or random) in

which cues appear. Our particular interest here is in how

manipulating the precision (dopamine) at various levels in this

hierarchical model will impact on cued responses. The interesting

behaviour depends entirely upon the prior beliefs entailed by the

form of the generative model and its equations of motion. These

are shown schematically in Figure 3, which highlights the

difference between the structured and dynamical expectations

implicit in the generative model (left panels) and the relatively

simple dynamics underlying the generation of sensory input (right

panels). This emphasises the fact that real behaviour emerges

through the expectations and active sampling of the environment

that an agent brings to the world: expectations that are embodied

in its generative model. It should be emphasised, that despite the

complexity of these models, perception and action can be

accounted for by one straightforward principle; namely the

minimisation of free energy, as in Equation 1.

If we substitute the generative model in Equation 6 into the

message passing (generalised predictive coding) scheme in

Equation 3, we arrived at the network architecture shown in

Figure 4. To lend this architecture a neurobiological plausibility,

we have assigned the prediction and error units to neuronal

populations in various cortical and subcortical structures. At the

sensory level, we have placed sensory prediction error in extrinsic

(visual) coordinates in the parietal cortex and the salience (e.g.,

illumination) of the four target locations in the superior colliculus;

Figure 2. This figure provides a schematic overview of winnerless competition. These itinerant (wandering) dynamics are used to model
sequential neuronal dynamics that, in this paper, encode prior beliefs about sequential changes in hidden states (e.g., affordance). Technically, these
dynamics comprise stable heteroclinic channels or cycles that connect unstable fixed points. The fixed points are the colored dots in the upper left
diagram. Each unstable fixed point is attractive in one dimension and repelling in another, expelling the state x[R4 so that it is captured by the next
unstable fixed point and so. A common example of these dynamics is provided by predator-prey relationships modeled with Lotka-Volterra equations
of motion, denoted by s(x,v) in the lower panel. The speed with which the fixed points are visited is controlled by a variable v that scales the
elements in a transition matrix A(v), which couples the attractor states. In this paper, the attractor states are mapped to fixed locations in an extrinsic
(physical) frame of reference to encode their affordance, using a softmax function of the attractor states s(x) and a matrix ‘[R2|4 , encoding their
locations. This means that the orbit or trajectory in the four dimensional attractor space maps to a two-dimensional trajectory, which cycles through
the four locations in a fixed order. We use this trajectory to generate forces that elicit pointing movements: See [87] and [23] for details.
doi:10.1371/journal.pcbi.1002327.g002
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cf., [91]. Predictions about the first level hidden states have been

divided into proprioceptive (angular position) and affordance states

in the motor and premotor cortex respectively; cf., [92]. The

motor cortex sends top-down projections to the parietal cortex and

spinal-cord to suppress visual prediction errors and elicit motor

reflexes respectively. In contrast, the premotor cortex sends top-

down predictions about visual salience to the superior colliculus.

Predictions about second level causes and states have been

assigned to the basal ganglia and prefrontal cortex respectively.

These encode the set (sequential or random context) currently

inferred. The basal ganglia and prefrontal cortex exchange

predictions and prediction errors through cortico-subcortical

loops, while the basal ganglia exchanges signals with the premotor

cortex to optimise predictions about affordance. The blue arrows

arising from the substantia nigra and ventral tegmental area (SN/

VTA) are meant to indicate the main (dopaminergic) projections

from this area that we assume modulate the postsynaptic gain of

the principal cells (red circles) elaborating prediction errors. The

activities of these (nigrotectal, nigrostriatal and mesocortical)

dopaminergic projections encode the precision of prediction

errors at different levels of the sensorimotor hierarchy. Although

the recent literature on the (mesorhombencephalic) nigrotectal

pathway, from SN to the superior colliculus, focuses on

GABAergic projections, a substantial proportion of nigrotectal

projection neurons use dopamine [93], [94], [95].

Simulations
The model above is sufficient to engender cued reaching

movements, which are anticipatory if the agent correctly infers

that the cues are presented in a fixed (clockwise) sequence.

However, if we reverse the order of the stimuli, there should be

accuracy and reaction time costs, due to the fact that the sequence

cannot be predicted under clockwise beliefs about the sequence.

Furthermore, there should be a set switching cost as the hidden

states at the second (context) level are inferred and the itinerant

dynamics at the first (affordance) level are suppressed. When we

integrated Equation 1, this is precisely what was found:

Figure 5 shows the results of a simulation using log precisions of

four (a relatively high precision) throughout the hierarchy. In this

example, the target locations appeared every 12 time bins (of

64 ms) using Gaussian bump functions of time. The first five

targets were in the (expected) clockwise order, while last five were

Figure 3. This figure distinguishes between the equations of the generative model (left-hand side; see Equation 6) and the
equations generating sensory information (right-hand side; see Equation 5). The generative model is trying to predict the sensory states
produced by the equations on the right. These sensory states comprise the location of the agent’s arm in both proprioceptive (intrinsic) and
exteroceptive (extrinsic) coordinates. The locations of the four cues in the previous figure are shown in extrinsic coordinates in the lower right insert.
In addition to these sensory inputs, the agent also receives sensory information about the salience of cues at the four locations (e.g., illumination).
The equations of the generative model have been divided into those responsible for the selection or generation of a particular context or set and
those specifying the relative affordance of cue locations used to select action. Crucially, both sets of equations are based on winnerless competition
using the itinerant dynamics of the previous figure. These equations come to life when action (driving movements) becomes a function of
conditional expectations about hidden variables in the generative model. See main text for further details.
doi:10.1371/journal.pcbi.1002327.g003
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presented in an anticlockwise order. The resulting conditional

predictions and prediction errors are shown in the top four panels

of Figure 5, while the trajectory in extrinsic coordinates and the

underlying action are shown in the bottom panels (left and right

respectively). The upper left panel shows the conditional

predictions of sensory signals and sensory prediction errors (in

red). These are errors on the salience, proprioceptive and visual

input, which, as can be seen, are small in relation to predictions.

The predictions were based upon the hidden states shown on the

upper right. One can see the itinerant cycling over conditional

expectations of hidden affordances (large amplitude lines) that are

inferred with a high degree of conditional confidence (the grey

areas correspond to 90% Bayesian confidence intervals). The

interesting aspect of these results lie in the middle two panels that

show the conditional expectations of the hidden causes and states

at the second level, encoding the context or set. These results show

that it takes about two movements or trials before there is a

confident inference that the context has changed. This inferential

set switching is driven by the large (downward) deflection in

prediction error shown in red (left middle panel). Note that with

these precisions, behaviour is accurate and fast and that the

violation of sequential expectations is barely discernible. In other

words, the precision of sensory information is sufficient to override

top-down prior expectations of a sequential sort, when they are

Figure 4. This schematic illustrates the connections between prediction units (black) and error units (red) that underlie the
simulated reaching movements. The prediction units encode conditional expectations about hidden states and causes, while the error units
encode the associated prediction errors. The connections between these two sorts of units are specified by the message passing scheme in Equation
3 (cf., Figure 1). In brief, error units pass precision weighted prediction errors forward and horizontally (red connections), while prediction units sent
predictions backwards and horizontally (black connections). Note that prediction units only communicate with error units and vice versa. In this
figure, expectations about hidden states in the first level have been divided into two sets, corresponding to the position of the arm (motor cortex)
and the affordance of the cue locations (premotor cortex). The blue circle at the bottom of this figure indicates motor neurons in the ventral horn of
the spinal cord that mediate action. The cyan arrows represent various projections from the substantia nigra and ventral tegmental area (SN/VTA).
Exteroceptive sensory information enters directly at parietal cortex and the superior colliculus encoding positional information about the arm and the
salience of cue locations respectively.
doi:10.1371/journal.pcbi.1002327.g004
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clearly violated. However, as we will see later, there is a

performance cost in terms of reaction time and accuracy.

The same simulated neuronal responses are shown in Figure 6,

where they are shown alongside their associated brain structure.

This figure tries to illustrate how neuronal dynamics unfold at

different timescales in different parts of the brain to produce motor

behaviour. Crucially, all the hierarchically deployed dynamics are

both entrained by and entrain dynamics in lower levels, through

the recurrent message passing implicit in generalised predictive

coding. By design, we have placed the slower dynamics in higher

(more anterior) brain areas [96], [97], [98–99], [100]. The

neuroanatomical interpretation of this simulation should not be

taken too seriously but illustrates the fact that the scheme is (in

principle) biologically plausible, both in terms of its dynamical

formulation and the functional anatomy of sensorimotor hierar-

chies in the brain.

Summary
In summary, we have created a generative model that illustrates

the itinerant and dynamic sensorimotor constructs that might be

used by the brain to predict cued sequential behaviours and set

switching in response to changing contingencies. It is worth noting,

that this relatively simple model has implicitly modelled (and

integrated) a number of apparently disparate processes in cognitive

neuroscience: for example, Bayes-optimal sensorimotor integra-

tion, evidence accumulation, anticipation, short term (working)

memory, action selection, set switching and a simple form of

reversal learning (in terms of switching to a new contingency). We

mean this in the straightforward sense that to perform accurately,

the simulated agent has to remember the sequence of cues in terms

of delay period activity in the premotor and prefrontal cortex

[101], encoded here in terms of conditional beliefs about the

dynamics of hidden states. Furthermore, to respond optimally the

agent has to recognize a reversal in the sequence of cues and adjust

its internal representation of context accordingly. Interestingly,

[102] presents a model of working memory using exactly the same

winnerless (generalized Lotka-Volterra) dynamics used in this

paper. Using this model, they show that working memory capacity

has an upper bound of seven items, under plausible assumptions

about lateral neuronal interactions. Crucially, the cognitive

processes like working memory do not need to be modelled

explicitly but emerge from the Bayesian inversion of a generative

model. In future work, we will use the same model to study

learning and working memory; however, our current focus is on

how Bayes-optimal behaviour degrades when we reduce the

precision of prediction errors:

Results

Simulating dopaminergic depletion
In this section, we repeat the above simulations under different

levels of precision in the putative targets of dopaminergic

projections. This is meant to simulate depleted levels of dopamine;

acting at postsynaptic D1 receptors to reduce postsynaptic gain

(see Figure 1). First, we reduced the log precision (by 50% in 6

steps) in the principal cells of the superior colliculus that report

the prediction errors on the salience of target locations:

ln ~PP(1,v)
a [f5,4:5,4 . . . ,2:5g.

The effects on conditional expectations of hidden states and

causes are shown in Figure 7 for high, intermediate and low levels

of precision (dopamine). The upper row shows the conditional

predictions of sensory input and sensory prediction errors as in

Figure 5, while the middle row shows the conditional expectations

of the hidden causes encoding context. The most remarkable thing

about these results is the failure to infer a change in the context (or

set) when dopamine is depleted. This results in an accumulation of

prediction error at the sensory level while, in contrast, the

prediction error at the second level (red lines in the middle panels)

decreases. This is an intuitive consequence of decreasing the

relative precision at lower levels of the hierarchical model, which

causes the inference to be over reliant upon top-down priors and

less confident about switching to the new context, when sensory

prediction errors are less precise.

This means that it takes longer before the second level

expectations accumulate sufficient evidence to make them switch,

following the reversal of stimulus order. At the lowest level of

simulated dopamine, this switch fails completely and the agent

Figure 5. This figure summarizes the results of simulations
under normal levels of dopamine (using a log precision of four
for all prediction errors). The conditional predictions and expecta-
tions are shown as functions of time over 128 time bins, each modeling
64 ms of time. The upper left panel shows the conditional predictions
(colored lines) and prediction errors (red lines) based upon the
expected in states on the upper right. In this panel and throughout,
the grey areas denote 90% Bayesian confidence intervals. The inferred
speed of itinerant cycling among affordance states corresponds to the
first of the hidden causes at the second level (left middle panel). These
hidden causes are a softmax function of their associated hidden states
(right middle panel). The blue lines encode a sequential context, while
the green lines encode the converse (random) context. The switching in
these conditional expectations occurs after sufficient sensory evidence
has accumulated following a reversal of the presentation order. The
lower left panel shows the trajectory (dotted lines) in an extrinsic frame
of reference, in relation to the cue locations (green circles), while the
lower right panel shows action in terms of horizontal and vertical
angular forces causing these movements.
doi:10.1371/journal.pcbi.1002327.g005
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always expects the next target to appear in the wrong (clockwise)

location. The behavioural consequences of this are shown gra-

phically in the lower panels of Figure 7, in terms of the trajectory of

movements over the ten cues (trials). We see here that the trajectory

is perturbed progressively as dopamine levels fall; with initial

directions being pulled in the direction of falsely anticipated target

locations. This is shown more clearly in Figure 8, which shows the

trajectory for the lowest level of dopamine. During the first five trials

the initial excursion from the lower right target is in the correct

direction for the next target in the (clockwise) sequence. However,

after the reversal, the initial trajectory from the lower left target is

drawn towards the incorrectly anticipated next target, requiring a

corrective adjustment to the movement trajectory, when the actual

target discloses itself.

Figure 9 shows the behavioural consequences of this precision

or dopamine-dependent failure to correctly infer the sequential

context: the top panel shows the reaction times (assuming 64 ms

time bins) measured as the time from the onset of the cue to the

time at which the target was reached (to within a radius of
1

32
). The

corresponding spatial accuracy is shown in the lower panel as a

weighted average of the (inverse) distance to target during each

trial. There are two important things to take from these results:

First, irrespective of the level of dopamine, reaction times are

faster when the next cue can be anticipated. Furthermore, there is

a price to be paid for this anticipatory speeding, when sequential

anticipations are violated. This is reflected in the increased

reaction times at the point of sequence reversal for a couple of

trials. It is these transient decreases in performance that index the

switching costs hypothesised earlier. Crucially, the effect of

dopamine depletion is to exacerbate both the switching costs

and the behavioural slowing when sequential predictions no longer

hold. In the limit of very low dopamine, and a complete failure to

switch sets (infer a context change), there is a marked impairment

in performance that persists following reversal. Perhaps the most

important result in Figure 9 is that the set switching costs persist

for longer with low levels of dopamine. In other words, there is a

perseveration of (suboptimal) anticipatory motor trajectories that is

exacerbated by dopamine depletion. This latent bradykinesia and

Figure 6. This figure combines the dynamical results from the previous figure with the supposed functional anatomy in Figure 3. It
shows the conditional expectations about hidden states and causes associated with regionally specific representations. The dotted red time courses
associated with the prediction error units in the striatum show a set-related prediction error when the order of the cues was reversed (after the first
five presentations). It is these prediction errors that drive the switch in contextual expectations assigned to the prefrontal cortex.
doi:10.1371/journal.pcbi.1002327.g006
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perseveration is reminiscent of the symptoms of Parkinson’s

disease [103], [104], which was the motivation for these

simulations.

On the basis of these results, one might predict that the greatest

difference between Parkinson’s patients on and off dopaminergic

medication would be expressed most acutely in trials that violated

expectations established during sequential cueing. Conversely,

there should be relatively small differences in reaction times when

stimuli are presented in the correct sequence: cf., [105].

Furthermore, differences in reaction times with unpredictable

cues should not be marked, once patients have realised that there

is no underlying sequence. We will consider these predictions in

relation to empirical results in a forthcoming paper. It is also

interesting to relate these simulations to the results in [106], who

found deficits in probabilistic reversal learning in Parkinson’s

disease, where ‘‘patients also exhibited compromised adaptability to

the reversal’’. Brown and Marsden [107] investigated set switching

in Parkinson’s disease using the Stroop task. Subjects had to report

either the semantic or physical colour of a word; however, the rule

changed every ten trials. The response dimension was cued before

each trial or subjects were just reminded to change the rule every ten

trials. Patients showed general psychomotor slowing but were

further impaired on the uncued condition, especially in the first trial

following a rule change.

Finally, we repeated the simulated lesion experiments above by

reducing the precision in other cortical and subcortical structures

Figure 7. This figure shows the results of simulations under progressively reduced levels of precision (dopamine) as indicated by
the equalities in the lower row. The display format of these simulated responses is the same as used in the left panels of Figure 5 (conditional
predictions and prediction error; hidden contextual causes at the second level and motor trajectories). The left column presents the conditional
responses under normal levels of dopamine (as in Figure 5), while the middle and right columns show the equivalent responses for intermediate and
low levels of dopamine. As noted in the main text, the main features of these simulations are reciprocal changes in the amplitude of prediction errors
at the first and second levels that are associated with a progressive failure set switching (i.e., a failure to recognise that the order of stimulus
presentation no longer conforms to sequential expectations).
doi:10.1371/journal.pcbi.1002327.g007
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in receipt of SN/VTA projections. The most interesting results are

shown in Figure 10 in terms of simulated reaction times over

different levels of dopamine: the left panels reproduce the reaction

time data of the previous figure, while the middle panel shows the

equivalent results obtained when depleting dopamine in the motor

cortex (encoding conditional expectations about proprioceptive

inputs). The effect of dopamine depletion here is to increase

reaction times in a non-specific way. This non-specific slowing was

expected, as proprioceptive prediction errors are subverted

thereby reducing motor vigour; cf., [108]. Note that inference

about affordance and set are not affected, because these are driven

by exteroceptive prediction errors. This means there is no change

in set switching or perseveration. Conversely, when we lesion

mesocortical projections to the premotor cortex (modulating

prediction errors about changes in affordance) there are effects on

both motor vigour and set switching (right hand panels).

Importantly, these effects differ from those produced by the same

lesion to the superior colliculus. Here, depleting dopamine actually

decreases reaction times. This is perfectly sensible because increasing

the precision at higher levels of a hierarchical model has the

opposite effect to increasing the precision of lower level prediction

errors. In other words, as dopamine levels in the premotor cortex

increase, the agent becomes overly confident about its top-down

(empirical) prior expectations, even in the face of precise sensory

information. This overconfidence is manifest in terms of a slight

impairment in reactions elicited by sensory cues. However, the

overconfidence about affordance enables the second level of the

generative model to recognise the change in context more efficiently

(quickly). This induces a trade-off between the efficiency with which

cues elicit movements and the efficiency of set switching.

Summary
In this section, we have seen how simulated dopamine depletion

is manifest in terms of neuronal responses encoding Bayes-optimal

inferences about sensorimotor contingencies and in terms of

behavior. The key point made by the simulations is that although

dopamine may have a singular mechanism of action and

computational function (e.g., to modulate postsynaptic gain and

encode precision) the physiological and behavioral correlates of

dopamine changes depend on where in the brain they are

Figure 8. This is a blow up of the motor trajectories under low
levels of dopamine from the previous figure. It highlights the fact
that when movements are in an expected clockwise direction, the initial
trajectory (dotted blue arrow) is directed towards the (correct) next
target location. Conversely, when the movements are in a counter
clockwise direction, the agent is initially confounded by false
expectations about which cue will appear next (dotted red arrow).
doi:10.1371/journal.pcbi.1002327.g008

Figure 9. This figure presents the behavioral results from the
simulations under different levels of dopamine. The upper panel
shows the reaction times for each trial or cue as a function of cue order
(over 10 cues). The reaction time was measured as the time from cue
onset to the time that the pointing location fell within a small distance
of the target location. The equivalent results for accuracy are shown in
the lower panel in terms of the (inverse) average distance from the
pointing location to the target location for each trial. The colored lines
correspond to different levels of simulated dopamine; with red lines
indicating the lowest level and yellow lines the highest. The key things
to note here are: (i) the reaction time costs of unpredictable (first five),
relative to predictable trials (first five), shown by the yellow line and (ii)
the increase in amplitude and duration of switching costs as dopamine
is depleted (colored lines); modeled here in terms of the precision of
prediction errors on visual salience.
doi:10.1371/journal.pcbi.1002327.g009

Active Inference and Affordance

PLoS Computational Biology | www.ploscompbiol.org 14 January 2012 | Volume 8 | Issue 1 | e1002327



expressed. This reiterates the point made in the introduction that

understanding the role of dopamine may call for a multilateral

perspective that accommodates the delicate balance among

distributed responses that underlie the functional anatomy of

behavior. The simulations in this section can be regarded as a

proof of principle that a single mechanism can lead to the diverse

functional consequences seen empirically [109], [7], [110]. Here,

dopamine had opposite effects on the speed of movements

(bradykinesia) depending upon whether it was depleted at higher

or lower levels of the sensorimotor hierarchy. Conversely,

simulated depletion of dopamine in the superior colliculus (low-

level) and premotor cortex (high-level) had similar effects on

perseveration. We emphasize this point because it has implications

for the computational modeling of dopamine, especially for

theoretical accounts of dopamine that consider one optimization

process in isolation (for example, associating dopamine with

reward prediction error). A nice example of the plurality of deficits

following insults to be dopamine system is provided by [111], who

conclude that Parkinson’s ‘‘patients on and off medication both

showed attentional shifting deficits, but for different reasons.

Deficits in non-medicated patients were consistent with an

inability to update the new attentional set, whereas those in

medicated patients were evident when having to ignore distractors

that had previously been task relevant.’’

In summary, contrary to what is often assumed, dopamine may

not report the prediction error on value but the value (precision) of

prediction errors. If this is the case, one would anticipate different

behavioral deficits following dopamine depletion, depending on

which prediction errors were affected. Strategically, it may be

better to ask not what the function of dopamine tells you about a

model but what a model tells you about the function of dopamine.

In this paper, the function of dopamine is to modulate postsynaptic

gain, while the model mediates between this (neuronal) function

and its behavioral and neurophysiologic consequences. See also

[11].

Discussion

In this paper, we have presented a simple model of cued

reaching movements and set switching that is consistent with the

notions of salience and affordance. Furthermore, we have

simulated some latent symptoms of Parkinsonism by reducing

the precision of cues that have affordance. Reducing this precision

(dopamine) delays and can even preclude set switching, with

associated costs in behavioral accuracy. When the precision of

sensory cues is removed completely, we obtain autonomous

behavior that is prescribed by the itinerant expectations of the

agent (results not shown). Crucially, these simulations are not

based on an ad hoc model of dopaminergic function but use exactly

the same principles, equations and numerics used previously to

address a wide variety of processes in cognitive neuroscience:

Table 1 lists the growing number of paradigms and processes that

Figure 10. This figure represents behavioral results in terms of reaction times for depleting dopamine in three regions: the superior
colliculus encoding sensory salience (as in previous figure), the motor cortex encoding proprioception (middle column) and the
premotor cortex encoding affordance (right column). These results are shown using the same format as in previous figure and illustrate the
qualitatively different effects of dopamine depletion in different parts of the brain (or model). The lower panels indicate the implicit projections, from
the substantia nigra or ventral tegmental area, have been selectively depleted (where a red cross highlights the forward prediction errors affected).
The key thing to take from these simulations is that reducing the precision of prediction errors on sensory salience induces bradykinesia and
perseveration; whereas the equivalent reduction in proprioceptive affordance causes bradykinesia without perseveration. Finally, compromising the
precision of changes in affordance increases perseveration and decreases bradykinesia.
doi:10.1371/journal.pcbi.1002327.g010
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can be explained in terms of free energy minimization and

hierarchical Bayesian inference. The simulations in this and

related papers can be reproduced from a graphical user interface

available in Matlab code (http://www.fil.ion.ucl.ac.uk/spm/).

In short, we have focused on the role of dopamine in balancing

the influence of bottom-up sensory information and top-down

(empirical) prior expectations during perceptual inference and

consequent behavior. This role is consistent with many other

theoretical treatments of dopamine in modulating top-down effects

and signal-to-noise [49], [44], [11], [112], [2], [113], [45], [39],

[40]; and contextualizes them within the formal setting of

generalized predictive coding.

Functional anatomy and dopamine
The simulations presented in this paper do not attempt to cover

all the physiological and computational processes that dopamine

may mediate. Our results pertain to classical neuromodulatory

postsynaptic consequences of changes in tonic dopamine release

(e.g., during depletion due to drugs or disease) on principal cells.

There are many aspects of dopaminergic function that are not

addressed by these simulations: for example, modulation of long-

term synaptic plasticity, or the differential roles of various pre- and

postsynaptic dopamine receptors. Furthermore, we have only

considered the effect of tonic or baseline dopamine levels (over

long time scales) and have ignored dopamine fluctuations on a

shorter time scale: for example, the phasic release of dopamine in

response to specific cues or its rapid clearance in the striatum by

the dopamine active transporter. However, the aim of the present

work was to highlight the computational, neurophysiologic and

anatomic considerations that suggest a unitary role for dopamine

in the encoding of precision.

There is a large literature on modeling dopamine in the context

of choice and motor behavior [114], [115], [116], [117], [118],

[119]. Some of this literature is based on reinforcement learning

and optimal decision theory; and formulated at a rather abstract

level in terms of discrete state spaces and time. It is difficult to

connect the (predictive coding) process model provided in this

paper with the more descriptive (but useful) heuristics provided by

reinforcement learning and economics. One link may be via

variational Bayesian formulations of reinforcement-learning up-

date equations (see below), in which precision-weighted prediction

errors play a key role [120]. On the other hand, there are

computational simulations whose biological detail goes beyond the

simulations in this paper [112], [121], [122], [123]. In this sense,

the simulations reported here should be regarded as an illustration

of how far one can get in modeling neuromodulation in the larger

setting of Bayes optimal action and perception. In this context,

Bayes optimality (implicit in free energy minimization) replaces

optimal control (implicit in reinforcement or value learning).

The ideas and simulations in this paper just show that dopamine

fits comfortably into a principled if somewhat abstract formulation

of action and perception. Specifically, it has the physiological

characteristics that would be required to fulfill a central role in

Bayes-optimal inference; namely, to encode precision or uncer-

tainty. This is why we have focused on the neuromodulation of

postsynaptic gain in cortical cells, mediated by D1 receptors. The

theoretical constraints we have considered do not really allow us to

say very much about the functional anatomy of the cortico-basal

ganglia-thalamic loops. Having said this, the dynamics necessary

for active inference are not inconsistent with many aspects of

known functional anatomy. For example, the basal ganglia are

believed to act on cortex through a process of focused disinhibition

[124]. In particular, the basal ganglia output nuclei fire tonically to

inhibit cortical activity, but strong striatal activity can reduce this

tonic activity to release target thalamic areas and their

corresponding cortical areas from inhibition. This basic functional

architecture is reflected in our simulations by the selection of an

appropriate sensorimotor set by representations of hidden causes

in the striatum that selectively enable particular attractors or

central pattern generators in premotor cortex. Note that focused

disinhibition is a necessary consequence of the dynamics on

hidden states and causes that mediate winnerless competition. In

one sense, it is difficult to imagine any alternative sort of dynamics

that could prescribe unique sequential behavior and motor

trajectories.

Although the computations that minimize free energy do not

predict the details of functional anatomy (in the same way that

maximizing adaptive fitness does not predict the details of a

phenotype), it does provide some interesting insights into large-

scale functional anatomy. These insights rest upon the notion that

the brain is a generative model of its environment. This means that

causal regularities in the environment should be recapitulated in its

neuroanatomy. The trick here is to think of the brain as generating

predictions of sensory input using its backward (top-down)

connections; in other words, to imagine the brain without the

forward connections that are used for perceptual inversion of its

generative model. The picture that emerges is a fine lacework of

cortical projections from high-order associative cortex that radiate

to sensory cortical areas and then send top-down predictions of

sensory input to thalamic nuclei. A nice example here is the

distinction between what and where pathways in visual processing

[125]. Their very existence suggests that the (hidden) causes of

visual inputs to the lateral geniculate nucleus are objects that can

belong to different categories and, crucially, can be in different

places. One might imagine that in a static universe, where objects

were bound to a particular place, the brain would not have

separate representations of what and where or their neuroana-

tomical correlates. So what does this sort of analysis imply for the

basal ganglia? We will focus on three specific predictions:

First, the fact that the outputs of the basal ganglia are to

thalamic nuclei suggests that the basal ganglia are at a

hierarchically lower level than prefrontal cortex. For example,

the ventral lateral nucleus receives inputs from the basal ganglia

(via the thalamic fasciculus) and sends outputs to the primary

motor cortex. The ventral lateral nucleus is juxtaposed to the

ventral posterolateral nucleus in receipt of proprioceptive and

somatosensory afferents via the posterior column-medial lemniscus

pathway. The implicit hierarchical level of the basal ganglia

suggests that the prefrontal cortical projections to the striatum

should be of the backwards type (originating from deep pyramidal

cells). Indeed, the cortical pyramidal neurons projecting to the

striatum are located in layers II–VI, but the densest projections

come from layer V [126]. Furthermore, the medium spiny neurons

that receive these corticostriatal projections express dopaminergic

(D1 - direct and D2 - indirect pathway) receptors [127]; as would

be expected, if they played the role of prediction error units that

are targeted by backward connections.

Second, in active inference, the balance between top-down prior

beliefs and bottom-up sensory information is controlled by the

relative precision of prediction errors at higher and lower levels of

cortico-basal ganglia-thalamic hierarchy. This suggests that there

will be an antagonistic control of dopaminergic projections to the

prefrontal cortex (higher level) and equivalent projections to the

striatal (lower-level). In anatomical terms, this may be reflected in

the segregation of the cells of origin of the nigrostriatal dopamine

projections (from the substantia nigra) and the cortical projections

(from the ventral tegmental area). Clearly, there are several

important functional associations in dopaminergic systems that
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may or may not be understandable at this level of analysis. Key

examples here include the opposing effects of the direct and

indirect pathways [128,129] and the opposing influences of

dopamine on synaptic plasticity [56].

Finally, it is interesting to note that the number of parameters of

statistical models is generally much greater than the degrees of

freedom of their variance or precision estimates. For example, a

classical statistical model with both between and within subject

factors can have hundreds of parameters yet can be inverted using

just two precisions (modeling within and between subject

variability). This might be a simple explanation for the fact that

the number of dopaminergic cells (encoding precision or context)

is much smaller than the myriad of cells (encoding hidden causes

or content) needed to parameterize the world.

Prior beliefs or rewards?
The current work presents a covert challenge to standard

theories of decision-making and motor control based upon the

concept of reward or value. As hinted at in the introduction, there

is an inherent circularity in reward-based accounts of behavior

that may obscure deeper questions about behavior. This is because

(psychological) reward is defined as a process that reinforces or

modifies behavior. As such, it is circular to use reward to explain

behavior. Although the concept of reward may provide beautifully

self-consistent descriptions of behavior in terms of optimizing

expected reward; e.g., [20], reward-based accounts (and their

neurophysiologic correlates) cannot explain behavior per se. The

alternative and simpler approach, provided by active inference,

replaces rewards with prior beliefs about how the world should

unfold and motivates these priors in evolutionary and ethological

terms. Put simply, survival does not depend on seeking out

rewards; it depends upon avoiding surprising encounters and

physiological states that are uncharacteristic of a given phenotype.

It is therefore sufficient to minimize surprise (free energy), which is

a problem of (active) inference, not reinforcement learning.

At no point in the formulation above do we refer to reward or

value; the only optimization was to minimize surprise about

expected outcomes. In the context of hierarchical inference, the

potentially potent role of dopamine is obvious. This is because the

delicate mixing of bottom-up sensory information, with top-down

priors, to produce conditional beliefs (and action) is exquisitely

sensitive to the precision or certainty ascribed to representations at

different levels of a hierarchy. This is a generic and ubiquitous

aspect of hierarchical inference; for example, inference about

treatment effects in group studies rests on veridical estimates of

within-subject, relative to between-subject variability (precision).

The idea here is that dopamine reports the precision (variability) in

hierarchical models used by the brain to infer the causes of sensory

data. In this view, the task instructions and cues provided to

subjects in decision-making experiments do not, in themselves,

constitute rewards but are used to instill prior beliefs about how

they should behave.

Although we have questioned the epistemological status of

reward on the grounds of circularity, one cannot deny that certain

cues are inherently rewarding; for example, those induced by

appetitive stimuli. In this sense, one might associate reward with

the affordance of (hidden) causes in the environment that elicit

obligatory volitional and autonomic responses. In this context, the

tautology of reward is resolved by noting that reward is a

perceptual attribute of a cue not a cause of behavior: in active

inference, behavior is caused by prior beliefs and ensuing

exchange with environment. These beliefs ensure certain states

are occupied frequently, where these states are, by definition,

valuable. In this view, value and reward are consequences not

causes of behavior. Behavior is caused by the environment and

prior beliefs that are established epigenetically or through

experience dependent learning. This means that reward is a

perceptual (hedonic) consequence of behavior, not a cause.

The argument in this paper is that the information (prediction

error) conveyed by rewarding cues cannot be encoded by

dopamine, because dopamine cannot excite postsynaptic the

responses that would be needed to mediate the influence of that

information: Dopamine can only modulate the postsynaptic

responses to glutamatergic or other neurotransmitter release. This

is not to say that rewarding cues will not excite dopamine cells.

Indeed, this is the hypothesis put forward here – namely that

rewards or cues with particular affordance can select exterocep-

tive, interoceptive and proprioceptive processing channels that

mediate behavioral responses. In short, dopamine may report the

precision or confidence about reward, not reward per se. This

account may explain why dopaminergic responses do not behave

as reward prediction errors generally. For example, a significant

proportion of dopamine neurons increase their firing to aversive

stimuli, and cues which predict them [130], [131]. This is the

opposite behavior to that predicted by the reward prediction error

hypothesis, but follows naturally from the precision encoding

framework, since both aversive and appetitive cues signal

predictable sensorimotor sequelae. The precision hypothesis also

accounts for the finding that dopaminergic neurons fire in

response to stimuli that predict the subsequent availability of

predictive information about upcoming reward, even though such

stimuli convey no information about the reward itself [132]. On

the account presented in this paper, such stimuli elicit dopami-

nergic activity because they signal the onset of a predictable

sequence of events. Accounting for all observed patterns of

dopaminergic activity falls outside the scope of this paper, but it is

clear that the precision hypothesis predicts the involvement of

dopamine in a broader range of processes than some existing

accounts.

The simulations in this paper focused on the depletion of

dopamine. However, increasing levels of, or sensitivity to,

dopamine in the basal ganglia has been implicated in several

movement disorders, including tardive dyskinesia [133], Hunting-

ton’s disease [134], Tourette syndrome [135], hemiballismus [136]

and levodopa-induced dyskinesia [137]. These disorders produce

involuntary, non-purposeful movements that are nonetheless more

structured than simple myoclonic jerks or tremor. If dopaminergic

transmission was increased pathologically in lower levels of the

hierarchy, fluctuations in ascending (afferent) prediction errors

could become sufficiently precise (potent) to trigger movement; in

other words, subliminal cues would be awarded aberrant

affordance and elicit inappropriate action.

Precision and learning rates
Although we have not dealt with the phasic release of dopamine

and the implicit optimization of precision, the current formulation

does make some strong predictions about the modulation of

stimulus bound or event related responses. If tonic dopaminergic

levels modulate postsynaptic gain, one would expect to see

amplified responses in the post synaptic targets of dopamine

projections that report (sensory) prediction errors. This means that

one might expect greater evoked responses to the same stimuli

when presented in a predictable, as opposed to an unpredictable

context. Indeed, this is the basis of an explanation for the

mismatch negativity: an increase in the event related potential

elicited by a novel or oddball stimulus, presented in a predictable

train of stimuli. The proposed mechanism rests on prediction

errors that are afforded too much precision [138].
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The central role of precision-weighted prediction errors also

emerges from other computational perspectives. For example, one

can formulate dynamic inference about the causes of sensory cues

without reference to neurobiology but as a generic hierarchical

Bayesian model [120]. Variational Bayesian methods then yield

the same sort of precision-weighted prediction errors as in the

present work. Crucially, the variational update equations are

formally related to reinforcement learning rules; where precisions

play the role of learning rates. This means that one could test

whether dopaminergic drug manipulations affect estimates of

precision (learning rates) based on empirical behavioral responses

during classical reinforcement learning paradigms.

We have not touched upon learning per se, because we have

assumed that the prior beliefs used to generate behavior were

already known in the simulations. In future work, we will use the

simulations above to look at the acquisition of prior beliefs in terms

of sequence learning and the effect that dopamine has on this

learning. The key issue here is that any effects of dopamine on

learning and activity-dependent plasticity (using free energy

minimization) are mediated vicariously through its effects on

neuronal activity. This means that the only thing specific about

dopamine, in the context of learning, is due to the restriction of its

projections to the (extended) motor system. This suggests that

sensory learning will be largely unaffected by dopaminergic

manipulations (simulated or real) to the extent that it is

independent of motor learning. We will explore this in future

work, in which we will treat (phasic) dopamine release as encoding

state-dependent precision, given contextual cues like conditioned

stimuli: see [132]. Formally, this is closely related to the use of

state-dependent precision to understand attentional gain in

perception [30].

One interesting aspect of the simulations in this paper is that

they lend themselves nicely to higher-order (operant) learning

paradigms: The behavior generated by high-level sensorimotor

constructs does not distinguish between sensations caused by

motor acts or vice versa, because distinct exteroceptive and motor

predictions only arise at lower (sensory) levels of the hierarchy. In

other words, we could regard the simulations above as simulations

of actions that disclose salient cues (as opposed to salient cues

causing action). This perspective may be useful when trying to

understand the central role of dopamine in action selection based

upon conditioned stimuli on the one hand, and optimizing

behavior to access conditioned reinforcers on the other.
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