454 research outputs found
Adverse Cerebral Outcomes after Coronary Bypass Surgery
ABSTRACT
Background Acute changes in cerebral function after elective coronary bypass surgery are a difficult clinical problem. We carried out a multicenter study to determine the incidence and predictors of — and the use of resources associated with — perioperative adverse neurologic events, including cerebral injury.
Methods In a prospective study, we evaluated 2108 patients from 24 U.S. institutions for two general categories of neurologic outcome: type I (focal injury, or stupor or coma at discharge) and type II (deterioration in intellectual function, memory deficit, or seizures).
Results Adverse cerebral outcomes occurred in 129 patients (6.1 percent). A total of 3.1 percent had type I neurologic outcomes (8 died of cerebral injury, 55 had nonfatal strokes, 2 had transient ischemic attacks, and 1 had stupor), and 3.0 percent had type II outcomes (55 had deterioration of intellectual function and 8 had seizures). Patients with adverse cerebral outcomes had higher in-hospital mortality (21 percent of patients with type I outcomes died, vs. 10 percent of those with type II and 2 percent of those with no adverse cerebral outcome; P0.001 for all comparisons), longer hospitalization (25 days with type I outcomes, 21 days with type II, and 10 days with no adverse outcome; P0.001), and a higher rate of discharge to facilities for intermediate- or long-term care (47 percent, 30 percent, and 8 percent; P0.001). Predictors of type I outcomes were proximal aortic atherosclerosis, a history of neurologic disease, and older age; predictors of type II outcomes were older age, systolic hypertension on admission, pulmonary disease, and excessive consumption of alcohol.
Conclusions Adverse cerebral outcomes after coronary bypass surgery are relatively common and serious; they are associated with substantial increases in mortality, length of hospitalization, and use of intermediate- or long-term care facilities. New diagnostic and therapeutic strategies must be developed to lessen such injury. (N Engl J Med 1996;335:1857-63.)
Comparativa del rendimiento teórico máximo y estimado de una planta solar de generación directa de vapor
CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia SolarRESUMEN: En el presente trabajo, se discute el límite teórico máximo de una planta solar de generación directa de vapor bajo la teoría de la termodinámica endorreversible y la termodinámica clásica, comparándolo con el rendimiento estimado en condiciones de operación. La planta solar emplea reflectores Fresnel para la generación directa de vapor con la finalidad de alimentar dos configuraciones de ciclo Rankine, con dos y tres extracciones de vapor respectivamente. Las presiones de las extracciones de vapor se determinaron estipulando una mínima generación de entropía en el ciclo con la finalidad de maximizar el rendimiento térmico. Como resultado de haber optimizado la generación de entropía, la planta analizada presenta un rendimiento térmico muy próximo al de la termodinámica endorreversible, por lo que puede establecerse que los ciclos Rankine discutidos estarán operando prácticamente a la máxima producción de potencia bajo los límites físicos del propio sistema.ABSTRACT: In the present work, the maximum theoretical limit of a direct steam generation solar plant is discussed under the theory of endoreversible thermodynamics and classical thermodynamics, comparing it with the estimated efficiency in operating conditions. The solar plant uses Fresnel reflectors for direct steam generation in order to feed two Rankine cycle configurations, with two and three steam extractions respectively. The pressures of the steam extractions were determined by stipulating a minimum generation of entropy in the cycle in order to maximize the thermal performance. As a result of optimizing the generation of entropy, the analyzed plant has a thermal efficiency very close to that of endoreversible thermodynamics, so it can be established that the Rankine cycles discussed will be operating at practically the maximum power output under the physical limits of the plant itself system.info:eu-repo/semantics/publishedVersio
The nature of transition circumstellar disks. I. The ophiuchus molecular cloud
We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d ∼ 125pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from JUP and accretion rates ranging from JUP) and negligible accretion (<10-11 M ⊙yr-1), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10-3 and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.Facultad de Ciencias Astronómicas y Geofísica
On the Circular Orbit Approximation for Binary Compact Objects In General Relativity
One often-used approximation in the study of binary compact objects (i.e.,
black holes and neutron stars) in general relativity is the instantaneously
circular orbit assumption. This approximation has been used extensively, from
the calculation of innermost circular orbits to the construction of initial
data for numerical relativity calculations. While this assumption is
inconsistent with generic general relativistic astrophysical inspiral phenomena
where the dissipative effects of gravitational radiation cause the separation
of the compact objects to decrease in time, it is usually argued that the
timescale of this dissipation is much longer than the orbital timescale so that
the approximation of circular orbits is valid. Here, we quantitatively analyze
this approximation using a post-Newtonian approach that includes terms up to
order ({Gm/(rc^2)})^{9/2} for non-spinning particles. By calculating the
evolution of equal mass black hole / black hole binary systems starting with
circular orbit configurations and comparing them to the more astrophysically
relevant quasicircular solutions, we show that a minimum initial separation
corresponding to at least 6 (3.5) orbits before plunge is required in order to
bound the detection event loss rate in gravitational wave detectors to < 5%
(20%). In addition, we show that the detection event loss rate is > 95% for a
range of initial separations that include all modern calculations of the
innermost circular orbit (ICO).Comment: 10 pages, 12 figures, revtex
Butyltin compounds in a sediment core from the old Tilbury basin, London, UK
Sections from a sediment core taken from the River Thames were analysed for butyltin species using gas chromatography with species-specific isotope dilution mass spectrometry. Results demonstrated that in most samples tributyltin concentrations of 20–60 ng/g accounted for <10% of the total butyltin species present, which is in agreement with data from other sediment samples which were historically contaminated with tributyltin. Vertical distribution of the organotin residues with depth throughout the core, with data on organochlorine compounds and heavy metals allowed for the construction of a consistent hypothesis on historical deposition of contaminated sediments. From this it was possible to infer that the concentrations of tributyltin in sediments deposited during the early 1960s were in the order of 400–600 lg/g by using degradation rate constants derived by other workers. Such values fall well within the range quoted for harbour sediments in the literature
Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity
This paper reports on our effort in modeling realistic astrophysical neutron
star binaries in general relativity. We analyze under what conditions the
conformally flat quasiequilibrium (CFQE) approach can generate
``astrophysically relevant'' initial data, by developing an analysis that
determines the violation of the CFQE approximation in the evolution of the
binary described by the full Einstein theory. We show that the CFQE assumptions
significantly violate the Einstein field equations for corotating neutron stars
at orbital separations nearly double that of the innermost stable circular
orbit (ISCO) separation, thus calling into question the astrophysical relevance
of the ISCO determined in the CFQE approach. With the need to start numerical
simulations at large orbital separation in mind, we push for stable and long
term integrations of the full Einstein equations for the binary neutron star
system. We demonstrate the stability of our numerical treatment and analyze the
stringent requirements on resolution and size of the computational domain for
an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.
Star cluster formation and star formation: the role of environment and star-formation efficiencies
“The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
- …