4 research outputs found

    White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study

    Get PDF
    Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and cognitive function in GRN mutation carriers. 336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 presymptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 presymptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants underwent MR imaging acquisition including isotropic 1 mm T1-weighted and T2-weighted sequences. WMH were automatically segmented and locally subdivided to enable a more detailed representation of the pathology distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain, NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of executive function). Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across GRN mutation carriers – in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5% had a severe load – a diffe

    Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes

    Get PDF
    Introduction: Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy. Methods: Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling. Results: Apathy severity increased over time in presymptomatic carriers, but not in non-carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions. Discussion: Apathy is an early marker of FTD-related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD

    Disease-related cortical thinning in presymptomatic granulin mutation carriers

    Get PDF
    Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting a

    Measurement of the isolated diphoton cross-section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb^-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD.Comment: 15 pages plus author list (27 pages total), 9 figures, 2 tables, final version to appear in Physical Review
    corecore