7 research outputs found

    Criação e implementação de um método de caixa de rufo com play along

    Get PDF
    Mestrado em Ensino da MúsicaA aprendizagem da Caixa de Rufo assume um papel de relevância no currículo da disciplina de Percussão nas escolas de ensino especializado da Música em Portugal. No entanto, o carácter simples e repetitivo do repertório trabalhado no início da aprendizagem, aliado a uma limitação sonora do próprio instrumento quando comparado com instrumentos melódicos, torna por vezes a prática da Caixa pouco motivadora. O trabalho desenvolvido neste projecto consistiu na criação e implementação de um método para Caixa de Rufo com Play Along para alunos iniciantes e na verificação da sua funcionalidade enquanto elemento potenciador da motivação e facilitador da aprendizagem. A sua implementação permitiu diversificar a forma de aprendizagem do instrumento, tornando a sua prática mais entusiasmante. Através dos inquéritos realizados, foi possível verificar que os alunos em início de aprendizagem, se sentem mais motivados para o estudo da Caixa, quando o repertório trabalhado inclui a utilização de Play Along. Assim, procurou-se perceber se a utilização deste método pode trazer mais vantagens para o desenvolvimento dos alunos do que os métodos tradicionais que não incluem Play Along.Snare Drum learning has a special role in the Percussion course curriculum in specialized Music schools in Portugal. However the simple and repetitive character of the repertoire used in the beginning of the learning procedure, along with a limitation of the sound of this instrument, when compared to melodic instruments, makes the practice of the Snare Drum very less motivating. In this project we created and put in place a method for Snare Drum with Play Along for beginners and verifyed its functionality as an element to increase motivation and as a learning facilitator. Its implementation allowed to explore and diversify the learning of the instrument making its practice much more exciting and fun. Through the enquires conducted, it was possible to verify that students in the beginning of the learning process felt more motivated to study the Snare Drum when the repertoire included Play Along exercises. Thereby with this study we aimed to understand if using this method could bring more bennefits to the students improvement than traditional methods, that do not include Play Along

    Risk of adverse outcomes in offspring with RT-PCR confirmed prenatal Zika virus exposure: an individual participant data meta-analysis of 13 cohorts in the Zika Brazilian Cohorts

    No full text
    The Zika Brazilian Cohorts Consortium was supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) (grant number 404861/2018-0). The individual studies participating in the ZBC-Consortium were funded by: Wellcome Trust and the United Kingdom’s Department for International Development (grant numbers: 205377/Z/16/Z; 201870/Z/16/Z). European Union’s Horizon 2020 research and innovation programme under ZikaPLAN (grant number 734584). Wellcome Trust - Research Enrichment in Epidemic Situation (grant number 107779/Z/15/Z; with ER1505 & ER1601). Medical Research Council on behalf of the Newton Fund and Wellcome Trust (grant number MC_PC_15088). National Institutes of Health/National Institute of Allergy and Infectious Diseases (grant number RO1/ AI140718). Fondation Christophe et Rodolphe Mérieux. National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) (grant numbers 443875/2018-9; 440573/2016-5; 441098/2016-9; 305090/2016-0; 307282/2017-1; 304476/2018-8; 465549/2014-4; 440763/2016-9; 309722/2017-9; 306708/2014-0; 440577/2016-0). Coordination for the improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes) (grant numbers 88881.130813/2016-01; 88887.116627/2016-01; 88887.136366/2017-00). Ministry of Health of Brazil - Emergency Response in Public Health - Zika virus and Microcephaly (Ministério da Saúde de Brasil - Resposta à Emergência em Saúde Pública – Zika vírus e Microcefalia) (grant number 837058/2016). Department of Science and Technology (Departamento de Ciência e Tecnologia - DECIT) (grant numbers 25000.072811/2016-19; 440839/2016-5). Foundation of Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP) (grant numbers 2016/08578-0; 2017/21688-1; 2013/21719-3; 2016/ 15021-1; 2015/12295-0; 2016/05115-9). Foundation of Research Support of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ) (grant numbers E-26/201.351/2016; E-18/ 2015TXB; E-26/202.862/2018; E 26/010.002477/2016). Foundation of Support for Research and Scientific and Technological Development of Maranhão (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão – FAPEMA) (grant number 008/2016). Brazilian Ministry of Health (Ministério da Saúde – MS) (grant number 929698560001160-02). Evandro Chagas Institute/Brazilian Ministry of Health (Instituto Evandro Chagas/Ministério da Saúde). Foundation of Research Support of the State of Goiás (Fundação de Amparo à Pesquisa do Estado de Goiás – FAPEG) (number grant 2017/10267000531). Foundation of Research Support of the State of Rio Grande do Sul (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS) (grant number 17/2551-0000521-0). Foundation to Support Teaching, Research and Assistance at Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto) and São Paulo State Department of Health (Secretaria de Saúde do Estado de São Paulo). Support Foundation of Pernambuco Science and Technology (Fundação de Amparo à Ciência e Tecnologia de Pernambuco – FACEPE) (grant numbers APQ-0172-4.01/16; APQ-0192-4.01/17; APQ0793-4.01/17).Federal University of Pernambuco. Postgraduate Program in Tropical Medicine. Recife, PE, Brazil / University of Pernambuco. Post-Graduation in Health Sciences. Recife, PE, Brazil.University of Pernambuco. Post-Graduation in Health Sciences. Recife, PE, Brazil.London School of Hygiene & Tropical Medicine. Department of Infectious Disease Epidemiology. London, UK.Federal University of Pernambuco. Postgraduate Program in Collective Health. Recife, PE, Brazil.University of Pernambuco. Post-Graduation in Health Sciences. Recife, PE, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil.Ribeirão Preto Medical School. Department of Pediatrics. Ribeirão Preto, SP, Brazil.Ribeirão Preto Medical School. Department of Gynecology and Obstetrics. Ribeirão Preto, SP, Brazil.Ribeirão Preto Medical School. Department of Gynecology and Obstetrics. Ribeirão Preto, SP, Brazil.Ribeirão Preto Medical School. Department of Pediatrics. Ribeirão Preto, SP, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil.Instituto Fernandes Figueira. Clinical Research Unit. Rio de Janeiro, RJ, Brazil.Oswaldo Cruz Foundation. Instituto Fernandes Figueira. Clinical Research Unit. Rio de Janeiro, RJ, Brazil.Oswaldo Cruz Foundation. Instituto Fernandes Figueira. Obstretics. Rio de Janeiro, RJ, Brazil.University of California. David Geffen School of Medicine. Department of Pediatrics. Los Angeles, CA, Estados Unidos.Oswaldo Cruz Foundation. Research Center Aggeu Magalhães. Recife, PE, Brazil.London School of Hygiene & Tropical Medicine. Department of Infectious Disease Epidemiology. London, UK.Oswaldo Cruz Foundation. Research Center Aggeu Magalhães. Recife, PE, Brazil.Altino Ventura Foundation. Department of Ophthalmology. Recife, PE, Brazil / Pernambuco Eyes Hospital. Recife, PE, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Medicine School of São José do Rio Preto. Department of Infectious Disease. São José do Rio Preto, SP, Brazil.Medicine School of São José do Rio Preto. Department of Infectious Disease. São José do Rio Preto, SP, Brazil.Medicine School of São José do Rio Preto. Department of Gynecology and Obstetrics. São José do Rio Preto, SP, Brazil.Medicine School of Jundiaí. Infectious Pediatric Laboratory. Jundiaí, SP, Brazil.Federal University of São Paulo. Department of Fetal Medicine. São Paulo, SP, Brazil.Father Anchieta University Center. Nursing School. Jundiaí, SP, Brazil.Federal University of São Paulo. Paulista School of Medicine. Departament of Obstetrics. São Paulo, SP, Brazil.Federal University of Goiás. Institute of Tropical Pathology and Public Health. Goiânia, GO, Brazil.Health Secretariat of Goiás State. Maternal and Child Hospital. Goiânia, GO, Brazil.Federal University of São Paulo. Paulista School of Medicine. Departament of Obstetrics. São Paulo, SP, Brazil.Health Secretariat of Goiás State. Maternal and Child Hospital. Goiânia, GO, Brazil.Universidade Federal do Rio Grande do Sul. Hospital das Clinicas de Porto Alegre. Departamento de Genética. Porto Alegre, RS, Brazil.City Hall of Tangará da Serra, Municipal Health Department, Tangará da Serra, MT, Brazil.Federal University of Campina Grande. Medical Academic Unit. Campina Grande, PB, Brazil.Federal University of Campina Grande. Medical Academic Unit. Campina Grande, PB, Brazil.Federal University of Rio de Janeiro. Department of Pediatrics. Rio de Janeiro, RJ, Brazil.D’Or Institute for Research & Education. Department of Pediatrics. Rio de Janeiro, RJ, Brazil.Departmentiversity of Rio de Janeiro Maternity School. Department of Obstectrics. Rio de Janeiro, RJ, Brazil.Departmentiversity of Rio de Janeiro Maternity School. Department of Obstectrics. Rio de Janeiro, RJ, Brazil.Reference Maternity Prof. José Maria de Magalhães Netto. Bahia Health Department, Salvador, BA, Brazil.Oswaldo Cruz Foundation. Gonçalo Moniz Institute. Salvador, BA, Brazil.Oswaldo Cruz Foundation. Gonçalo Moniz Institute. Salvador, BA, Brazil.Federal University of Rio de Janeiro. Department of Infecitous Diseases. Rio de Janeiro, RJ, Brazil.Federal University of Rio de Janeiro. Department of Infecitous Diseases. Rio de Janeiro, RJ, Brazil.Oswaldo Cruz Foundation. Gonçalo Moniz Institute. Salvador, BA, Brazil.Oswaldo Cruz Foundation. Leonidas and Maria Deane Institute. Manaus, AM, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Oswaldo Cruz Foundation. Leonidas and Maria Deane Institute. Manaus, AM, Brazil.Oswaldo Cruz Foundation. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brazil.Background: Knowledge regarding the risks associated with Zika virus (ZIKV) infections in pregnancy has relied on individual studies with relatively small sample sizes and variable risk estimates of adverse outcomes, or on surveillance or routinely collected data. Using data from the Zika Brazilian Cohorts Consortium, this study aims, to estimate the risk of adverse outcomes among offspring of women with RT-PCR-confirmed ZIKV infection during pregnancy and to explore heterogeneity between studies. Methods: We performed an individual participant data meta-analysis of the offspring of 1548 pregnant women from 13 studies, using one and two-stage meta-analyses to estimate the absolute risks. Findings: Of the 1548 ZIKV-exposed pregnancies, the risk of miscarriage was 0.9%, while the risk of stillbirth was 0.3%. Among the pregnancies with liveborn children, the risk of prematurity was 10,5%, the risk of low birth weight was 7.7, and the risk of small for gestational age (SGA) was 16.2%. For other abnormalities, the absolute risks were: 2.6% for microcephaly at birth or first evaluation, 4.0% for microcephaly at any time during follow-up, 7.9% for neuroimaging abnormalities, 18.7% for functional neurological abnormalities, 4.0% for ophthalmic abnormalities, 6.4% for auditory abnormalities, 0.6% for arthrogryposis, and 1.5% for dysphagia. This risk was similar in all sites studied and in different socioeconomic conditions, indicating that there are not likely to be other factors modifying this association. Interpretation: This study based on prospectively collected data generates the most robust evidence to date on the risks of congenital ZIKV infections over the early life course. Overall, approximately one-third of liveborn children with prenatal ZIKV exposure presented with at least one abnormality compatible with congenital infection, while the risk to present with at least two abnormalities in combination was less than 1.0%

    Risk of adverse outcomes in offspring with RT-PCR confirmed prenatal Zika virus exposure: an individual participant data meta-analysis of 13 cohorts in the Zika Brazilian Cohorts ConsortiumResearch in context

    No full text
    Summary: Background: Knowledge regarding the risks associated with Zika virus (ZIKV) infections in pregnancy has relied on individual studies with relatively small sample sizes and variable risk estimates of adverse outcomes, or on surveillance or routinely collected data. Using data from the Zika Brazilian Cohorts Consortium, this study aims, to estimate the risk of adverse outcomes among offspring of women with RT-PCR-confirmed ZIKV infection during pregnancy and to explore heterogeneity between studies. Methods: We performed an individual participant data meta-analysis of the offspring of 1548 pregnant women from 13 studies, using one and two-stage meta-analyses to estimate the absolute risks. Findings: Of the 1548 ZIKV-exposed pregnancies, the risk of miscarriage was 0.9%, while the risk of stillbirth was 0.3%. Among the pregnancies with liveborn children, the risk of prematurity was 10,5%, the risk of low birth weight was 7.7, and the risk of small for gestational age (SGA) was 16.2%. For other abnormalities, the absolute risks were: 2.6% for microcephaly at birth or first evaluation, 4.0% for microcephaly at any time during follow-up, 7.9% for neuroimaging abnormalities, 18.7% for functional neurological abnormalities, 4.0% for ophthalmic abnormalities, 6.4% for auditory abnormalities, 0.6% for arthrogryposis, and 1.5% for dysphagia. This risk was similar in all sites studied and in different socioeconomic conditions, indicating that there are not likely to be other factors modifying this association. Interpretation: This study based on prospectively collected data generates the most robust evidence to date on the risks of congenital ZIKV infections over the early life course. Overall, approximately one-third of liveborn children with prenatal ZIKV exposure presented with at least one abnormality compatible with congenital infection, while the risk to present with at least two abnormalities in combination was less than 1.0%. Funding: National Council for Scientific and Technological Development - Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq); Wellcome Trust and the United Kingdom's Department for International Development; European Union's Horizon 2020 research and innovation program; Medical Research Council on behalf of the Newton Fund and Wellcome Trust; National Institutes of Health/National Institute of Allergy and Infectious Diseases; Foundation Christophe et Rodolphe Mérieux; Coordination for the improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes); Ministry of Health of Brazil; Brazilian Department of Science and Technology; Foundation of Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP); Foundation of Research Support of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ); Foundation of Support for Research and Scientific and Technological Development of Maranhão; Evandro Chagas Institute/Brazilian Ministry of Health (Instituto Evandro Chagas/Ministério da Saúde); Foundation of Research Support of the State of Goiás (Fundação de Amparo à Pesquisa do Estado de Goiás – FAPEG); Foundation of Research Support of the State of Rio Grande do Sul (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS); Foundation to Support Teaching, Research and Assistance at Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto); São Paulo State Department of Health (Secretaria de Saúde do Estado de São Paulo); Support Foundation of Pernambuco Science and Technology (Fundação de Amparo à Ciência e Tecnologia de Pernambuco – FACEPE)

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p<0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p<0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status
    corecore