263 research outputs found

    Genetic Control of Reproductive Traits in Tomatoes Under High Temperature

    Full text link
    [EN] Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant responses to a range of increasing temperature conditions is a prerequisite to developing cultivars with increased resilience. The current work reports the identification of Quantitative Trait Loci (QTL) involved in reproductive traits affected by temperature, such as the flower number (FLN) and fruit number (FRN) per truss and percentage of fruit set (FRS), stigma exsertion (SE), pollen viability (PV) and the incidence of the physiological disorder tipburn (TB). These traits were investigated in 168 Recombinant Inbred Lines (RIL) and 52 Introgression Lines (IL) derived from the cross between Solanum lycopersicum var. "MoneyMaker" and S. pimpinellifolium accession . Mapping populations were cultivated under increased temperature regimen conditions: T1 (25 degrees C day/21 degrees C night), T2 (30 degrees C day/25 degrees C night) and T3 (35 degrees C day/30 degrees C night). The increase in temperature drastically affected several reproductive traits, for example, FRS in Moneymaker was reduced between 75 and 87% at T2 and T3 when compared to T1, while several RILs showed a reduction of less than 50%. QTL analysis allowed the identification of genomic regions affecting these traits at different temperatures regimens. A total of 22 QTLs involved in reproductive traits at different temperatures were identified by multi-environmental QTL analysis and eight involved in pollen viability traits. Most QTLs were temperature specific, except QTLs on chromosomes 1, 2, 4, 6, and 12. Moreover, a QTL located in chromosome 7 was identified for low incidence of TP in the RIL population, which was confirmed in ILs with introgressions on chromosome 7. Furthermore, ILs with introgressions in chromosomes 1 and 12 had good FRN and FRS in T3 in replicated trials. These results represent a catalog of QTLs and pre-breeding materials that could be used as the starting point for deciphering the genetic control of the genetic response of reproductive traits at different temperatures and paving the road for developing new cultivars adapted to climate change.Sara Gimeno was supported by the program "Youth Employment Initiative" from the European Union and the Spanish Ministry of Economy and Competitiveness. This work was supported by the European Commission H2020 research and innovation program through the TOMGEM project agreement No. 679796.Gonzalo, MJ.; Li, Y.; Chen, K.; Gil, D.; Montoro, T.; Nájera, I.; Baixauli, C.... (2020). Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00326S11511Abdul-Baki, A. A. (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stress. Journal of the American Society for Horticultural Science, 116(6), 1113-1116. doi:10.21273/jashs.116.6.1113Abdul-Baki, A. A., & Stommel, J. R. (1995). Pollen Viability and Fruit Set of Tomato Genotypes under Optimumand High-temperature Regimes. HortScience, 30(1), 115-117. doi:10.21273/hortsci.30.1.115Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524Alam, M., Sultana, N., Ahmad, S., Hossain, M., & Islam, A. (1970). Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bangladesh Journal of Agricultural Research, 35(3), 367-373. doi:10.3329/bjar.v35i3.6442Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4Alsamir, M., Ahmad, N., Arief, V., Mahmood, T., & Trethowan, R. (2019). Phenotypic diversity and marker-trait association studies under heat stress in tomato (Solanum lycopersicum L.). Australian Journal of Crop Science, 13((04) 2019), 578-587. doi:10.21475/ajcs.19.13.04.p1581Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0Barrantes, W., López-Casado, G., García-Martínez, S., Alonso, A., Rubio, F., Ruiz, J. J., … Monforte, A. J. (2016). Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01172Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00273Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4Capel, C., Yuste-Lisbona, F. J., López-Casado, G., Angosto, T., Cuartero, J., Lozano, R., & Capel, J. (2016). Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population. Theoretical and Applied Genetics, 130(1), 213-222. doi:10.1007/s00122-016-2809-9Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. doi:10.1038/nclimate2153CHARLES, W. B., & HARRIS, R. E. (1972). TOMATO FRUIT-SET AT HIGH AND LOW TEMPERATURES. Canadian Journal of Plant Science, 52(4), 497-506. doi:10.4141/cjps72-080Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558Chung, M.-Y., Vrebalov, J., Alba, R., Lee, J., McQuinn, R., Chung, J.-D., … Giovannoni, J. (2010). A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. The Plant Journal, 64(6), 936-947. doi:10.1111/j.1365-313x.2010.04384.xDane, F., Hunter, A. G., & Chambliss, O. L. (1991). Fruit Set, Pollen Fertility, and Combining Ability of Selected Tomato Genotypes under High-temperature Field Conditions. Journal of the American Society for Horticultural Science, 116(5), 906-910. doi:10.21273/jashs.116.5.906deVicente, M. C., & Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134(2), 585-596. doi:10.1093/genetics/134.2.585Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188Geisenberg, C., & Stewart, K. (1986). Field crop management. The Tomato Crop, 511-557. doi:10.1007/978-94-009-3137-4_13Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). identification for tolerance to fruit set in tomato by fAFLP markers. Cropp Breeding and Applied Biotechnology, 7(3), 234-241. doi:10.12702/1984-7033.v07n03a02Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5), 9643-9684. doi:10.3390/ijms14059643Jenni, S., Truco, M. J., & Michelmore, R. W. (2013). Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theoretical and Applied Genetics, 126(12), 3065-3079. doi:10.1007/s00122-013-2193-7Kugblenu, Y. O., Oppong Danso, E., Ofori, K., Andersen, M. N., Abenney-Mickson, S., Sabi, E. B., … Jørgensen, S. T. (2013). Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 63(6), 516-522. doi:10.1080/09064710.2013.813062Levy, A., Rabinowitch, H. D., & Kedar, N. (1978). Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27(1), 211-218. doi:10.1007/bf00039137Lin, K.-H., Yeh, W.-L., Chen, H.-M., & Lo, H.-F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. doi:10.1007/s10681-010-0147-6Lohar, D. ., & Peat, W. . (1998). Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae, 73(1), 53-60. doi:10.1016/s0304-4238(97)00056-3Macias-González, M., Truco, M. J., Bertier, L. D., Jenni, S., Simko, I., Hayes, R. J., & Michelmore, R. W. (2019). Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 132(8), 2209-2222. doi:10.1007/s00122-019-03349-6Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3(3), 269-283. doi:10.1016/j.cj.2015.01.001Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684Nahar, K., & Ullah, S. M. (2011). Effect of Water Stress on Moisture Content Distribution in Soil and Morphological Characters of Two Tomato (Lycopersicon esculentum Mill) Cultivars. Journal of Scientific Research, 3(3), 677-682. doi:10.3329/jsr.v3i3.7000Nahar, K., & Ullah, S. (2012). Morphological and Physiological Characters of Tomato (Lycopersicon esculentum Mill) Cultivars under Water Stress. Bangladesh Journal of Agricultural Research, 37(2), 355-360. doi:10.3329/bjar.v37i2.11240Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6). doi:10.1007/s10681-017-1927-zPeet, M. M., Sato, S., & Gardner, R. G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environment, 21(2), 225-231. doi:10.1046/j.1365-3040.1998.00281.xPowell, A. L. T., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., … Bennett, A. B. (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 336(6089), 1711-1715. doi:10.1126/science.1222218Pressman, E., Harel, D., Zamski, E., Shaked, R., Althan, L., Rosenfeld, K., & Firon, N. (2006). The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. The Journal of Horticultural Science and Biotechnology, 81(3), 341-348. doi:10.1080/14620316.2006.11512071PRESSMAN, E. (2002). The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 90(5), 631-636. doi:10.1093/aob/mcf240Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455Rick, C. M., & Dempsey, W. H. (1969). Position of the Stigma in Relation to Fruit Setting of the Tomato. Botanical Gazette, 130(3), 180-186. doi:10.1086/336488Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M. M., Olivieri, F., Frusciante, L., & Barone, A. (2019). Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy, 9(1), 22. doi:10.3390/agronomy9010022Salinas, M., Capel, C., Alba, J. M., Mora, B., Cuartero, J., Fernández-Muñoz, R., … Capel, J. (2012). Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theoretical and Applied Genetics, 126(1), 83-92. doi:10.1007/s00122-012-1961-0SATO, S., KAMIYAMA, M., IWATA, T., MAKITA, N., FURUKAWA, H., & IKEDA, H. (2006). Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development. Annals of Botany, 97(5), 731-738. doi:10.1093/aob/mcl037Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A., & Baulcombe, D. C. (2011). Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. The EMBO Journal, 31(2), 257-266. doi:10.1038/emboj.2011.458Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563Starck, Z., Siwiec, A., & Chotuj, D. (1994). Distribution of calcium in tomato plants in response to heat stress and plant growth regulators. Plant and Soil, 167(1), 143-148. doi:10.1007/bf01587609Vegas, J., Garcia-Mas, J., & Monforte, A. J. (2013). Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics, 126(6), 1531-1544. doi:10.1007/s00122-013-2071-3Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2018). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132(3), 669-686. doi:10.1007/s00122-018-3270-8WAHID, A., GELANI, S., ASHRAF, M., & FOOLAD, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223. doi:10.1016/j.envexpbot.2007.05.011Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y., … Wu, Z. (2019). Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-2008-3Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.145

    HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system

    Get PDF
    This document is the Accepted Manuscript version of the following article: Mokhtar Benasla, Tayeb Allaoui, Mostefa Brahami, Mouloud Denai, and Vijay K. Sood, ‘HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system’, Renewable and Sustainable Energy Reviews, November 2017. Under embargo. Embargo end date: 20 November 2018. The published version is available online at doi: DOI: https://doi.org/10.1016/j.rser.2017.10.075. Published by Elsevier Ltd. This manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.In the last decade, there have been several initiatives for the deployment of cross-Mediterranean HVDC (High Voltage Direct Current) links to enable the transmission of electrical power from renewable energy sources between North Africa and Europe. These initiatives were mainly driven by the potential economic, environmental and technical benefits of these HVDC interconnections. In previous studies on these projects, some technical aspects of critical importance have not been addressed or studied in sufficient detail. One of these key aspects relates to the impact and possible benefit of these HVDC links on the dynamic performance of the European system which is the major focus of this paper. Several issues relating to the dynamic performance of the system are addressed here. Based on the experience gained from existing AC/DC projects around the world, this paper shows that the HVDC links between North Africa and Europe can greatly improve the dynamic performance of the European system especially in the southern regions. In addition, some challenges on the operation and control of these HVDC links are highlighted and solutions to overcome these challenges are proposed. This review paper, therefore, serves as a preliminary study for further detailed investigation of specific impacts or benefits of these interconnections on the overall performance of the European system.Peer reviewe

    Treatment Interruption and Variation in Tablet Taking Behaviour Result in Viral Failure: A Case-Control Study from Cape Town, South Africa

    Get PDF
    BACKGROUND: Understanding of the impact of non-structured treatment interruption (TI) and variation in tablet-taking on failure of first-line antiretroviral therapy (ART) is limited in a resource-poor setting. METHODS: A retrospective matched case-control analysis. Individuals failing ART were matched by time on ART with 4 controls. Viral load (VL) and CD4 count were completed 4-monthly. Adherence percentages, from tablet returns, were calculated 4-monthly (interval) and from ART start (cumulative). Variation between intervals and TI (>27 days off ART) were recorded. Conditional multivariate logistic regression analysis was performed to estimate the effect of cumulative adherence 10% and TI on virological failure. Age, gender, baseline log VL and CD4 were included as possible confounders in the multivariate model. RESULTS: 244 patients (44 cases, 200 controls) were included. Median age was 32 years (IQR28-37), baseline CD4 108 cells/mm3 (IQR56-151), VL 4.82 log (IQR4.48-5.23). 94% (96% controls, 86% failures) had cumulative adherence >90%. The odds of failure increased 3 times (aOR 3.01, 95%CI 0.81-11.21) in individuals with cumulative adherence 10% and 4.01 times (aOR 4.01, 95%CI 1.45-11.10) in individuals with TIs. For individuals with TI and cumulative adherence >95%, the odds of failing were 5.65 (CI 1.40-22.85). CONCLUSION: It is well known that poor cumulative adherence increases risk of virological failure, but less well understood that TI and variations in tablet-taking also play a key role, despite otherwise excellent adherence

    Regioselective Synthesis of Benzimidazolones via Cascade C–N Coupling of Monosubstituted Ureas

    Get PDF
    A direct method for the regioselective construction of benzimidazolones is reported wherein a single palladium catalyst is employed to couple monosubstituted urea substrates with differentially substituted 1,2-dihaloaromatic systems. In this method, the catalyst is able to promote a cascade of two discrete chemoselective C–N bond-forming processes that allows the highly selective and predictable formation of complex heterocycles from simple, readily available starting materials.National Institutes of Health (U.S.) (Award GM58160)National Institutes of Health (U.S.) (Award GM099817)Lanxess CorporationMassachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition

    Get PDF
    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    Get PDF
    Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.info:eu-repo/semantics/acceptedVersio

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    Get PDF
    Extended data and supplementary information are available at https://doi.org/10.1038/s41588-019-0522-8Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop

    Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae)

    Get PDF
    Background: Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding.Results: We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue) prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp) that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions.Conclusion: We present the first broad survey of gene sequences and allelic variation in C. pepo, where limited prior genomic information existed. The transcriptome provides an invaluable new tool for biological research. The developed molecular markers are the basis for future genetic linkage and quantitative trait loci analysis, and will be essential to speed up the process of breeding new and better adapted squash varieties. © 2011 Blanca et al; licensee BioMed Central Ltd.Blanca Postigo, JM.; Cañizares Sales, J.; Roig Montaner, MC.; Ziarsolo Areitioaurtena, P.; Nuez Viñals, F.; Picó Sirvent, MB. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 12:104-117. doi:10.1186/1471-2164-12-104S1041171

    Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Highly active anti-retroviral therapy (HAART) is the current HIV/AIDS treatment modality. Despite the fact that HAART is very effective in suppressing HIV-1 replication and reducing the mortality of HIV/AIDS patients, it has become increasingly clear that HAART does not offer an ultimate cure to HIV/AIDS. The high cost of the HAART regimen has impeded its delivery to over 90% of the HIV/AIDS population in the world. This reality has urgently called for the need to develop inexpensive alternative anti-HIV/AIDS therapy. This need has further manifested by recent clinical trial failures in anti-HIV-1 vaccines and microbicides. In the current study, we characterized a panel of extracts of traditional Chinese medicinal herbal plants for their activities against HIV-1 replication.</p> <p>Methods</p> <p>Crude and fractionated extracts were prepared from various parts of nine traditional Chinese medicinal herbal plants in Hainan Island, China. These extracts were first screened for their anti-HIV activity and cytotoxicity in human CD4+ Jurkat cells. Then, a single-round pseudotyped HIV-luciferase reporter virus system (HIV-Luc) was used to identify potential anti-HIV mechanisms of these extracts.</p> <p>Results</p> <p>Two extracts, one from <it>Euphorbiaceae</it>, <it>Trigonostema xyphophylloides </it>(TXE) and one from <it>Dipterocarpaceae</it>, <it>Vatica astrotricha </it>(VAD) inhibited HIV-1 replication and syncytia formation in CD4+ Jurkat cells, and had little adverse effects on host cell proliferation and survival. TXE and VAD did not show any direct inhibitory effects on the HIV-1 RT enzymatic activity. Treatment of these two extracts during the infection significantly blocked infection of the reporter virus. However, pre-treatment of the reporter virus with the extracts and treatment of the extracts post-infection had little effects on the infectivity or gene expression of the reporter virus.</p> <p>Conclusion</p> <p>These results demonstrate that TXE and VAD inhibit HIV-1 replication likely by blocking HIV-1 interaction with target cells, i.e., the interaction between gp120 and CD4/CCR5 or gp120 and CD4/CXCR4 and point to the potential of developing these two extracts to be HIV-1 entry inhibitors.</p

    Palladium–mediated organofluorine chemistry

    Get PDF
    Producción CientíficaThe substitution of fluorine for hydrogen in a molecule may result in profound changes in its properties and behaviour. Fluorine does not introduce special steric constraints since the F atom has a small size. However, the changes in bond polarity and the possibility of forming hydrogen bonds with other hydrogen donor fragments in the same or other molecules, may change the solubility and physical properties of the fluorinated compound when compared to the non-fluorinated one. Fluorine forms strong bonds to other elements and this ensures a good chemical stability. Altogether, fluorinated compounds are very attractive in materials chemistry and in medicinal chemistry, where many biologically active molecules and pharmaceuticals do contain fluorine in their structure and this has been shown to be essential for their activityJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA302U13)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA256U13
    corecore