17 research outputs found

    Organic matter processing and opportunities for stream mitigation in an intensively mined West Virginia watershed

    Get PDF
    Mountaintop removal/valley fill mining is a controversial process that may have far-reaching impacts on central Appalachian watersheds. Our project sought to quantify spatial and temporal variation in organic matter processing within Pigeon Creek, an intensively mined sub-watershed of the Tug Fork River in southern West Virginia. Our objectives were to: (1) quantify variation in organic matter retention and decomposition among streams differing in size (drainage area), gradient, and structural complexity; and (2) quantify the effect of valley fills on stream flow, water chemistry, organic matter processing, and benthic invertebrate colonization of detritus packs in 1 st order perennial streams. Our study area consisted of 26 sites distributed across a wide range of stream sizes (ephemeral channels to large perennial streams). Four of the small perennial sites were located below large valley fills and were paired to four undisturbed sites. At each site we quantified water temperature (continuous), stream flow (continuous), habitat quality and complexity, water chemistry (seasonal), artificial leaf and stick transport (seasonal), leaf pack decomposition (seasonal), and invertebrate colonization (seasonal). Organic matter decomposition rates were variable, but unrelated to any environmental factors that we measured. Drainage area, channel complexity, and mining had a significant interactive effect on transport distance of leaves and sticks. Sites below valley fills had enhanced flow levels, but this did not result in higher transport levels. Also, sites below valley fills had significantly higher conductivity, but this did not produce a significant effect on organic matter decomposition or on benthic invertebrate colonization of leaf packs. These results add to our understanding of complex interactive effects of mining on stream ecosystem functions and our ability to compensate for lost headwater functions through restoration actions downstream

    High mannose N-glycans on red blood cells as phagocytic ligands, mediating both sickle cell anaemia and resistance to malaria

    Get PDF
    Acknowledgements We are grateful for the assistance provided by both the Microscopy and Histology Core Facility, and the Iain Fraser Cytometry Centre, at the University of Aberdeen. We thank Ann Wheeler and Matt Pearson from Edinburgh Super-Resolution Imaging Consortium for technical support with 3D SIM microscopy. We also thank Janet A. Willment and Bernard Kerscher, supervised by G.D.B., for providing the Fc fusion proteins, Jeanette A. Wagener, supervised by Neil A.R.G. Gow, for providing high purity chitin, Jan Westland for obtaining blood samples and Paul Crocker for useful discussions. Principal funding for this project was provided by Wellcome Trust grant 094847 (R.N.B, L.P.E, M.A.V). In addition, support was provided by Biotechnology and Biological Sciences Research Council grants BBF0083091 (A.D. and S.M.H.) and BBK0161641 (A.D. and S.M.H.), Wellcome Trust grant 082098 (A.D.), Wellcome Trust grants 97377, 102705 (G.D.B) and funding for the MRC Centre for Medical Mycology at the University of Aberdeen MR/N006364/1 (G.D.B).Non peer reviewe

    Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance

    Get PDF
    Acknowledgements We are grateful for the assistance provided by both the Microscopy and Histology Core Facility, and the Iain Fraser Cytometry Centre, at the University of Aberdeen. We thank Ann Wheeler and Matt Pearson from Edinburgh Super-Resolution Imaging Consortium for technical support with 3D SIM microscopy. We also thank Janet A. Willment and Bernard Kerscher, supervised by G.D.B., for providing the Fc fusion proteins, Jeanette A. Wagener, supervised by Neil A.R.G. Gow, for providing high purity chitin, Jan Westland for obtaining blood samples and Paul Crocker for useful discussions. Principal funding for this project was provided by Wellcome Trust grant 094847 (R.N.B., L.P.E., M.A.V.). In addition, support was provided by Biotechnology and Biological Sciences Research Council grants BBF0083091 (A.D. and S.M.H.) and BBK0161641 (A.D. and S.M.H.), Wellcome Trust grant 082098 (A.D.), Wellcome Trust grants 97377, 102705 (G.D.B.), and funding for the MRC Centre for Medical Mycology at the University of Aberdeen MR/N006364/1 (G.D.B.).Peer reviewedPublisher PD

    Host control and nutrient trading in a photosynthetic symbiosis

    Get PDF
    Photosymbiosis is one of the most important evolutionary trajectories, resulting in the chloroplast and the subsequent development of all complex photosynthetic organisms. The ciliate Paramecium bursaria and the alga Chlorella have a well established and well studied light dependent endosymbiotic relationship. Despite its prominence, there remain many unanswered questions regarding the exact mechanisms of the photosymbiosis. Of particular interest is how a host maintains and manages its symbiont load in response to the allocation of nutrients between itself and its symbionts. Here we construct a detailed mathematical model, parameterised from the literature, that explicitly incorporates nutrient trading within a deterministic model of both partners. The model demonstrates how the symbiotic relationship can manifest as parasitism of the host by the symbionts, mutualism, wherein both partners benefit, or exploitation of the symbionts by the hosts. We show that the precise nature of the photosymbiosis is determined by both environmental conditions (how much light is available for photosynthesis) and the level of control a host has over its symbiont load. Our model provides a framework within which it is possible to pose detailed questions regarding the evolutionary behaviour of this important example of an established light dependent endosymbiosis; we focus on one question in particular, namely the evolution of host control, and show using an adaptive dynamics approach that a moderate level of host control may evolve provided the associated costs are not prohibitive

    Variation and asymmetry in host-symbiont dependence in a microbial symbiosis

    Get PDF
    Background Symbiosis is a major source of evolutionary innovation and, by allowing species to exploit new ecological niches, underpins the functioning of ecosystems. The transition from free-living to obligate symbiosis requires the alignment of the partners’ fitness interests and the evolution of mutual dependence. While symbiotic taxa are known to vary widely in the extent of host-symbiont dependence, rather less is known about variation within symbiotic associations. Results Using experiments with the microbial symbiosis between the protist Paramecium bursaria and the alga Chlorella, we show variation between pairings in host-symbiont dependence, encompassing facultative associations, mutual dependence and host dependence upon the symbiont. Facultative associations, that is where both the host and the symbiont were capable of free-living growth, displayed higher symbiotic growth rates and higher per host symbiont loads than those with greater degrees of dependence. Conclusions These data show that the Paramecium-Chlorella interaction exists at the boundary between facultative and obligate symbiosis, and further suggest that the host is more likely to evolve dependence than the algal symbiont

    The TRPM2 channel nexus from oxidative damage to Alzheimer’s pathologies: An emerging novel intervention target for age-related dementia

    Get PDF
    Alzheimer’s disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid β peptide (Aβ) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aβ generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel ‘hypothesis’ that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aβ and/or oxidative damage to AD pathologies. The ‘hypothesis’ based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia
    corecore