138 research outputs found
Seagrasses (Zostera marina) and (Zostera japonica) Display a Differential Photosynthetic Response to TCO2: Implications for Acidification Mitigation
Excess atmospheric CO2 is being absorbed at an unprecedented rate by the global and coastal oceans, shifting the baseline pCO2 and altering seawater carbonate chemistry in a process known as ocean acidification (OA). Recent attention has been given to near-shore vegetated habitats, such as seagrass beds, which may have the potential to mitigate the effects of acidification on vulnerable calcifying organisms via photosynthesis. Seagrasses are capable of raising seawater pH and calcium carbonate saturation state during times of high photosynthetic activity. To better understand the photosynthetic potential of seagrass OA mitigation, we exposed Pacific Northwest populations of native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA, to various irradiance and total CO2 (TCO2) concentrations ranging from ~1770 – 2100 μmol TCO2 kg-1.
Our results indicate that the maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 74 μmol TCO2 mgchl-1 hr-1 and 113 ± 21 μmol TCO2 mgchl-1 hr-1, respectively). In addition, Z. japonica increased its Pmax 77% (± 56%) when TCO2 increased from ~1770 to 2050 μmol TCO2 kg-1, whereas Z. marina did not display an increase in Pmax with higher TCO2. The lack of response by Z. marina to TCO2 is a departure from previous findings; however, it is likely that the variance within our treatments (coefficient of variation: 30 – 60%) obscured any positive effect of TCO2 on Z. marina given the range of concentrations tested. Because previous findings have shown that Z. marina is saturated with respect to HCO3- at low pH (≥ 7.5) we, therefore, suggest that the unequivocal positive response of Z. japonica to TCO2 is a result of increased HCO3- utilization in addition to increased CO2 uptake.
Considering that Z. japonica displays a greater photosynthetic rate than Z. marina when normalized to chlorophyll, particularly under enhanced TCO2 conditions, the ability of Z. japonica to mitigate OA may also increase relative to Z. marina in the future ocean. Higher photosynthetic rates by Z. japonica result in a greater potential, on a per chlorophyll basis, to increase pH and calcium carbonate saturation state—both of which affect acid-base regulation and calcification of calcifying organisms vulnerable to acidification. While it is important to consider genotypic differences throughout Z. marina and Z. japonica’s biogeographical distribution, our findings help elucidate the potential contribution both seagrasses have on variations in carbonate chemistry. Further, our results could be applied to ecosystem service models aimed at determining how specific seagrass species can be grown in a controlled setting to help mitigate OA hotspots that affect commercial shellfish aquaculture
Recommended from our members
Diurnal variations in the corrosiveness and acidification of porewater and its effects on populationdynamics of marine bivalves
The undergradtuate research project was the completion, manipulation and assessment of a population model. The stage based population model assessed the late larval and juveniles stages of the hard shell clam Mercenaria mercenaria. There were seven class sizes input into the model starting with pediveligers and ending with juveniles at specific developmental sizes: ~0.2mm(Pediveliger), ~0.2mm+ (Dissoconch I) and ~1.0mm+ (Dissoconch II). Parameters or vital rates input into the model included growth, survival and saturation state. The aim of the model was to investigate by what degree the saturation state of CaCO3 (Ωaragonite) influences the population dynamics of Mercenaria mercenaria. My project involved adding the seventh class size to the model, and changing the constant value of saturation state to a variable parameter on a diurnal cycle. Additionally, the assessment of the model output would be the focus of the research.
The model was constructed in matlab, so the learning this software was necessary for the manipulation and completion of this model. The vital rates of survival and growth were probabilities defined from lab and field experiments published in the literature. Saturation state was incorporated into these probabilities as a way to change the values according to environmental conditions. The task of parameterizing saturation state as a cyclical function meant the reworking of how model probabilities were populated. Writing the function and integrating the varying saturation states to each time step was the dominate focus of the project before analysis.
Background literature was necessary in order to establish a range of saturation state (Ω) values to input into the model. With accurate values of saturation state obtained, three different simulation trials were run to represent the diurnal variation. The simulations ranged from high (0.20 – 2.20), medium (0.54 – 1.86) and low (0.87 -1.53). The values represent amplitudes of 0.33, 0.66 and 1.0 within a diurnal cycle. By assessing the different simulation runs all with the same mean value of 1.2, the characterization of dramatic shifts could be compared amongst the three simulation runs. Assessing the degree of change this variation had on the population was the main objective for the model output.
Once the model was completed the objectives included: assessing what stage class had the highest sensitivity to changes in vital rates, evaluation of hourly mortality rates given varying diurnal cycles in saturation state, identifying specific time in days that the population reaches stable age distribution and survivors converge to ultimate size class, and compare population growth rate of large diurnal shifts or small shifts at constant undersaturation. The output of the model provided the necessary data to assess the population dynamics and answer the above objectives. Analysis of the data was completed in matlab and Microsoft excel.
Future work for this model will be to create a separate carbonate chemistry which will run in parallel with the population model. The objective of this carbonate chemistry model will be to parameterize saturation state more completely by the components that constitute what saturation state is
Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells
Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF) virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells
Recommended from our members
The Prevalence and Clinical Implications of Comorbid Back Pain in Shoulder Instability: A Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Instability Cohort Study.
Background:Understanding predictors of pain is critical, as recent literature shows that comorbid back pain is an independent risk factor for worse functional and patient-reported outcomes (PROs) as well as increased opioid dependence after total joint arthroplasty. Purpose/Hypothesis:The purpose of this study was to evaluate whether comorbid back pain would be predictive of pain or self-reported instability symptoms at the time of stabilization surgery. We hypothesized that comorbid back pain will correlate with increased pain at the time of surgery as well as with worse scores on shoulder-related PRO measures. Study Design:Cross-sectional study; Level of evidence, 3. Methods:As part of the Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Instability cohort, patients consented to participate in pre- and intraoperative data collection. Demographic characteristics, injury history, preoperative PRO scores, and radiologic and intraoperative findings were recorded for patients undergoing surgical shoulder stabilization. Patients were also asked, whether they had any back pain. Results:The study cohort consisted of 1001 patients (81% male; mean age, 24.1 years). Patients with comorbid back pain (158 patients; 15.8%) were significantly older (28.1 vs 23.4 years; P < .001) and were more likely to be female (25.3% vs 17.4%; P = .02) but did not differ in terms of either preoperative imaging or intraoperative findings. Patients with self-reported back pain had significantly worse preoperative pain and shoulder-related PRO scores (American Shoulder and Elbow Surgeons score, Western Ontario Shoulder Instability Index) (P < .001), more frequent depression (22.2% vs 8.3%; P < .001), poorer mental health status (worse scores for the RAND 36-Item Health Survey Mental Component Score, Iowa Quick Screen, and Personality Assessment Screener) (P < .01), and worse preoperative expectations (P < .01). Conclusion:Despite having similar physical findings, patients with comorbid back pain had more severe preoperative pain and self-reported symptoms of instability as well as more frequent depression and lower mental health scores. The combination of disproportionate shoulder pain, comorbid back pain and mental health conditions, and inferior preoperative expectations may affect not only the patient's preoperative state but also postoperative pain control and/or postoperative outcomes
Productivity of mixed kelp communities in an Arctic fjord exhibit tolerance to a future climate
Arctic fjords are considered to be one of the ecosystems changing most rapidly in response to climate change. In the Svalbard archipelago, fjords are experiencing a shift in environmental conditions due to the Atlantification of Arctic waters and the retreat of sea-terminating glaciers. These environmental changes are predicted to facilitate expansion of large, brown macroalgae, into new ice-free regions. The potential resilience of macroalgal benthic communities in these fjord systems will depend on their response to combined pressures from freshening due to glacial melt, exposure to warmer waters, and increased turbidity from meltwater runoff which reduces light penetration. Current predictions, however, have a limited ability to elucidate the future impacts of multiple-drivers on macroalgal communities with respect to ecosystem function and biogeochemical cycling in Arctic fjords. To assess the impact of these combined future environmental changes on benthic productivity and resilience, we conducted a two-month mesocosm experiment exposing mixed kelp communities to three future conditions comprising increased temperature (+ 3.3 and + 5.3°C), seawater freshening by ∼ 3.0 and ∼ 5.0 units (i.e., salinity of 30 and 28, respectively), and decreased photosynthetically active radiation (PAR, - 25 and - 40 %). Exposure to these combined treatments resulted in non-significant differences in short-term productivity, and a tolerance of the photosynthetic capacity across the treatment conditions. We present the first robust estimates of mixed kelp community production in Kongsfjorden and place a median compensation irradiance of ∼12.5 mmol photons m−2 h−1 as the threshold for positive net community productivity. These results are discussed in the context of ecosystem productivity and biological tolerance of kelp communities in future Arctic fjord systems
The Mechanism of (R,R) ZX-5 on Increasing NO Release
(R,R) ZX-5 has been proven to have positive effects on choroidal blood flow without affecting the sclera and ciliary bodies in New Zealand white rabbits. This study was designed to investigate the mechanisms of (R,R) ZX-5 on improving the choroidal blood flow and promoting NO production. HUVECs (human umbilical vein endothelial cells) were used to determine the production of eNOS, p-eNOS, AKT and Erk1/2 by Western blot analysis. iNOS and eNOS mRNA levels were investigated by RT-PCR and the effect of (R,R) ZX-5 on NO production were determined by eNOS activity assay. We found (R,R) ZX-5 upregulated protein expression of eNOS and iNOS, increased NO production, and reduced ERK and Akt protein level. Therefore, (R,R) ZX-5 may promote the choroidal blood flow in New Zealand white rabbits without affecting the blood flow in the iris or ciliary bodies via increasing NO production. These results suggest that (R,R) ZX-5 may function to cure and prevent Age-related macular degeneration (AMD)
Drivers of Change in Arctic Fjord Socio-ecological Systems: Examples from the European Arctic
Fjord systems are transition zones between land and sea, resulting in complex and dynamic environments. They are of particular interest in the Arctic as they harbour ecosystems inhabited by a rich range of species and provide many societal benefits. The key drivers of change in the European Arctic (i.e., Greenland, Svalbard, and Northern Norway) fjord socio-ecological systems are reviewed here, structured into five categories: cryosphere (sea ice, glacier mass balance, and glacial and riverine discharge), physics (seawater temperature, salinity, and light), chemistry (carbonate system, nutrients), biology (primary production, biomass, and species richness), and social (governance, tourism, and fisheries). The data available for the past and present state of these drivers, as well as future model projections, are analysed in a companion paper. Changes to the two drivers at the base of most interactions within fjords, seawater temperature and glacier mass balance, will have the most significant and profound consequences on the future of European Arctic fjords. This is because even though governance may be effective at mitigating/adapting to local disruptions caused by the changing climate, there is possibly nothing that can be done to halt the melting of glaciers, the warming of fjord waters, and all of the downstream consequences that these two changes will have. This review provides the first transdisciplinary synthesis of the interactions between the drivers of change within Arctic fjord socio-ecological systems. Knowledge of what these drivers of change are, and how they interact with one another, should provide more expedient focus for future research on the needs of adapting to the changing Arctic
Recommended from our members
Saturation-state sensitivity of marine bivalve larvae to ocean acidification
Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid-base regulation in has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval bivalve shell development and growth are dependent on seawater saturation state, and not on carbon dioxide partial pressure or pH. Although other physiological processes are affected by pH, mineral saturation state thresholds will be crossed decades to centuries ahead of pH thresholds due to the non-linear changes in the carbonate system variables as carbon dioxide is added. Our findings were repeatable for two species of larval bivalves, could resolve discrepancies in experimental results, are consistent with a previous model of ocean acidification impacts due to rapid calcification in bivalve larvae, and suggest a fundamental ocean acidification bottleneck at early life-history for some marine keystone species.This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Nature Publishing Group, Macmillan Publishers Ltd., and can be found at: http://www.nature.com/nclimate/index.htmlKeywords: Biocalcification, Bivalve Larvae, Ocean Acidification, Larval Physiology, Carbonate ChemistryKeywords: Biocalcification, Bivalve Larvae, Ocean Acidification, Larval Physiology, Carbonate Chemistr
Recommended from our members
Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae
Ocean acidification (OA) is altering the chemistry of the world’s oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, P[subscript]CO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or P[subscript]CO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to P[subscript]CO2, and possibly minor response to pH under elevated P[subscript]CO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or P[subscript]CO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or P[subscript]CO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by saturation state
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
- …