138 research outputs found

    Seagrasses (Zostera marina) and (Zostera japonica) Display a Differential Photosynthetic Response to TCO2: Implications for Acidification Mitigation

    Get PDF
    Excess atmospheric CO2 is being absorbed at an unprecedented rate by the global and coastal oceans, shifting the baseline pCO2 and altering seawater carbonate chemistry in a process known as ocean acidification (OA). Recent attention has been given to near-shore vegetated habitats, such as seagrass beds, which may have the potential to mitigate the effects of acidification on vulnerable calcifying organisms via photosynthesis. Seagrasses are capable of raising seawater pH and calcium carbonate saturation state during times of high photosynthetic activity. To better understand the photosynthetic potential of seagrass OA mitigation, we exposed Pacific Northwest populations of native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA, to various irradiance and total CO2 (TCO2) concentrations ranging from ~1770 – 2100 μmol TCO2 kg-1. Our results indicate that the maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 74 μmol TCO2 mgchl-1 hr-1 and 113 ± 21 μmol TCO2 mgchl-1 hr-1, respectively). In addition, Z. japonica increased its Pmax 77% (± 56%) when TCO2 increased from ~1770 to 2050 μmol TCO2 kg-1, whereas Z. marina did not display an increase in Pmax with higher TCO2. The lack of response by Z. marina to TCO2 is a departure from previous findings; however, it is likely that the variance within our treatments (coefficient of variation: 30 – 60%) obscured any positive effect of TCO2 on Z. marina given the range of concentrations tested. Because previous findings have shown that Z. marina is saturated with respect to HCO3- at low pH (≥ 7.5) we, therefore, suggest that the unequivocal positive response of Z. japonica to TCO2 is a result of increased HCO3- utilization in addition to increased CO2 uptake. Considering that Z. japonica displays a greater photosynthetic rate than Z. marina when normalized to chlorophyll, particularly under enhanced TCO2 conditions, the ability of Z. japonica to mitigate OA may also increase relative to Z. marina in the future ocean. Higher photosynthetic rates by Z. japonica result in a greater potential, on a per chlorophyll basis, to increase pH and calcium carbonate saturation state—both of which affect acid-base regulation and calcification of calcifying organisms vulnerable to acidification. While it is important to consider genotypic differences throughout Z. marina and Z. japonica’s biogeographical distribution, our findings help elucidate the potential contribution both seagrasses have on variations in carbonate chemistry. Further, our results could be applied to ecosystem service models aimed at determining how specific seagrass species can be grown in a controlled setting to help mitigate OA hotspots that affect commercial shellfish aquaculture

    Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Get PDF
    Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF) virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells

    Productivity of mixed kelp communities in an Arctic fjord exhibit tolerance to a future climate

    Get PDF
    Arctic fjords are considered to be one of the ecosystems changing most rapidly in response to climate change. In the Svalbard archipelago, fjords are experiencing a shift in environmental conditions due to the Atlantification of Arctic waters and the retreat of sea-terminating glaciers. These environmental changes are predicted to facilitate expansion of large, brown macroalgae, into new ice-free regions. The potential resilience of macroalgal benthic communities in these fjord systems will depend on their response to combined pressures from freshening due to glacial melt, exposure to warmer waters, and increased turbidity from meltwater runoff which reduces light penetration. Current predictions, however, have a limited ability to elucidate the future impacts of multiple-drivers on macroalgal communities with respect to ecosystem function and biogeochemical cycling in Arctic fjords. To assess the impact of these combined future environmental changes on benthic productivity and resilience, we conducted a two-month mesocosm experiment exposing mixed kelp communities to three future conditions comprising increased temperature (+ 3.3 and + 5.3°C), seawater freshening by ∼ 3.0 and ∼ 5.0 units (i.e., salinity of 30 and 28, respectively), and decreased photosynthetically active radiation (PAR, - 25 and - 40 %). Exposure to these combined treatments resulted in non-significant differences in short-term productivity, and a tolerance of the photosynthetic capacity across the treatment conditions. We present the first robust estimates of mixed kelp community production in Kongsfjorden and place a median compensation irradiance of ∼12.5 mmol photons m−2 h−1 as the threshold for positive net community productivity. These results are discussed in the context of ecosystem productivity and biological tolerance of kelp communities in future Arctic fjord systems

    The Mechanism of (R,R) ZX-5 on Increasing NO Release

    Get PDF
    (R,R) ZX-5 has been proven to have positive effects on choroidal blood flow without affecting the sclera and ciliary bodies in New Zealand white rabbits. This study was designed to investigate the mechanisms of (R,R) ZX-5 on improving the choroidal blood flow and promoting NO production. HUVECs (human umbilical vein endothelial cells) were used to determine the production of eNOS, p-eNOS, AKT and Erk1/2 by Western blot analysis. iNOS and eNOS mRNA levels were investigated by RT-PCR and the effect of (R,R) ZX-5 on NO production were determined by eNOS activity assay. We found (R,R) ZX-5 upregulated protein expression of eNOS and iNOS, increased NO production, and reduced ERK and Akt protein level. Therefore, (R,R) ZX-5 may promote the choroidal blood flow in New Zealand white rabbits without affecting the blood flow in the iris or ciliary bodies via increasing NO production. These results suggest that (R,R) ZX-5 may function to cure and prevent Age-related macular degeneration (AMD)

    Drivers of Change in Arctic Fjord Socio-ecological Systems: Examples from the European Arctic

    Get PDF
    Fjord systems are transition zones between land and sea, resulting in complex and dynamic environments. They are of particular interest in the Arctic as they harbour ecosystems inhabited by a rich range of species and provide many societal benefits. The key drivers of change in the European Arctic (i.e., Greenland, Svalbard, and Northern Norway) fjord socio-ecological systems are reviewed here, structured into five categories: cryosphere (sea ice, glacier mass balance, and glacial and riverine discharge), physics (seawater temperature, salinity, and light), chemistry (carbonate system, nutrients), biology (primary production, biomass, and species richness), and social (governance, tourism, and fisheries). The data available for the past and present state of these drivers, as well as future model projections, are analysed in a companion paper. Changes to the two drivers at the base of most interactions within fjords, seawater temperature and glacier mass balance, will have the most significant and profound consequences on the future of European Arctic fjords. This is because even though governance may be effective at mitigating/adapting to local disruptions caused by the changing climate, there is possibly nothing that can be done to halt the melting of glaciers, the warming of fjord waters, and all of the downstream consequences that these two changes will have. This review provides the first transdisciplinary synthesis of the interactions between the drivers of change within Arctic fjord socio-ecological systems. Knowledge of what these drivers of change are, and how they interact with one another, should provide more expedient focus for future research on the needs of adapting to the changing Arctic

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
    corecore