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Abstract 

Excess atmospheric CO2 is being absorbed at an unprecedented rate by the global and 

coastal oceans, shifting the baseline pCO2 and altering seawater carbonate chemistry in a process 

known as ocean acidification (OA). Recent attention has been given to near-shore vegetated 

habitats, such as seagrass beds, which may have the potential to mitigate the effects of 

acidification on vulnerable calcifying organisms via photosynthesis. Seagrasses are capable of 

raising seawater pH and calcium carbonate saturation state during times of high photosynthetic 

activity. To better understand the photosynthetic potential of seagrass OA mitigation, we 

exposed Pacific Northwest populations of native Zostera marina and non-native Zostera 

japonica seagrasses from Padilla Bay, WA, to various irradiance and total CO2 (TCO2) 

concentrations ranging from ~1770 – 2100 µmol TCO2 kg-1.  

Our results indicate that the maximum net photosynthetic rate (Pmax) for Z. japonica as a 

function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll 

(360 ± 74 µmol TCO2 mg chl-1 hr-1 and 113 ± 21 µmol TCO2 mg chl-1 hr-1, respectively). In 

addition, Z. japonica increased its Pmax 77% (± 56%) when TCO2 increased from ~1770 to 2050 

µmol TCO2 kg-1, whereas Z. marina did not display an increase in Pmax with higher TCO2. The 

lack of response by Z. marina to TCO2 is a departure from previous findings; however, it is 

likely that the variance within our treatments (coefficient of variation: 30 – 60%) obscured any 

positive effect of TCO2 on Z. marina given the range of concentrations tested. Because previous 

findings have shown that Z. marina is saturated with respect to HCO3
- at low pH (≥ 7.5) we, 

therefore, suggest that the unequivocal positive response of Z. japonica to TCO2 is a result of 

increased HCO3
- utilization in addition to increased CO2 uptake.  
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Considering that Z. japonica displays a greater photosynthetic rate than Z. marina when 

normalized to chlorophyll, particularly under enhanced TCO2 conditions, the ability of Z. 

japonica to mitigate OA may also increase relative to Z. marina in the future ocean. Higher 

photosynthetic rates by Z. japonica result in a greater potential, on a per chlorophyll basis, to 

increase pH and calcium carbonate saturation state—both of which affect acid-base regulation 

and calcification of calcifying organisms vulnerable to acidification. While it is important to 

consider genotypic differences throughout Z. marina and Z. japonica’s biogeographical 

distribution, our findings help elucidate the potential contribution both seagrasses have on 

variations in carbonate chemistry. Further, our results could be applied to ecosystem service 

models aimed at determining how specific seagrass species can be grown in a controlled setting 

to help mitigate OA hotspots that affect commercial shellfish aquaculture. 
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Introduction 

The rate at which anthropogenic fossil fuel emissions are taken up by the global oceans is 

shifting the acid-base balance of the oceanic carbonate system, leading to a decrease in carbonate 

mineral saturation state (Ωar/cal) and pH, in a process known as ocean acidification (OA) (Sabine 

et al. 2004, Orr et al. 2005, Hönisch et al. 2012). While an increasing baseline of CO2 will affect 

the entirety seawater carbonate chemistry, coastal ocean carbonate chemistry is predominately 

driven by biological metabolism, riverine discharge and associated organic matter composition, 

tidal pumping, upwelling, nutrient input, and eutrophication (Feely et al. 2008, Cai 2011, Duarte 

et al. 2013, Waldbusser and Salisbury 2014, Wallace et al. 2014). These myriad factors driving 

coastal ocean carbonate chemistry induce high variability to the system, and result in periodic 

and episodic pH and saturation state decreases that are more extreme than the ~0.4 pH and ~1.5 

Ωar decreases that are predicted for in open ocean surface waters by the end of the century 

(Duarte et al. 2013, Ciais et al. 2014, Waldbusser and Salisbury 2014). The high variability of 

coastal ocean carbonate chemistry is expected to be superimposed on the long term global trend 

of increasing seawater CO2, potentially leading to even more extreme conditions for near-shore 

coastal waters (Harris et al. 2013, Hauri et al. 2013, Waldbusser and Salisbury 2014). It is 

possible, however, that biological photosynthetic and respiration cycles, which in large part 

control coastal ocean carbonate chemistry, may respond in a way that could dampen or 

exacerbate the magnitude of extreme carbonate chemistry events. Due to the economic and social 

vulnerability of human coastal communities to near-shore acidification (Ekstrom et al. 2015), it 

is imperative to understand how coastal acidification may be mitigated on a local scale in order 

to prevent the negative effects on ecologically important organisms and ecosystems.   
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A broad range of organisms will exhibit impaired survival, growth, and calcification from 

the effects of acidification—increasing the potential for shifts in ecosystem dynamics by altering 

species distribution, diversity, and organismal competitive interactions (Doney et al. 2009, 

Kroeker et al. 2010, 2013, Gaylord et al. 2015). Due to the natural variability of the carbonate 

system in near-shore coastal waters, however, it has been suggested that resident calcifying 

organisms vulnerable to the effects of acidification may be more physiologically resilient if they 

demonstrate plasticity and are pre-adapted to highly variable carbonate systems (Pörnter 2008, 

Hofmann et al. 2011, Bernhardt and Leslie 2013). While some organisms may indeed 

demonstrate an increased tolerance to highly variably carbonate chemistry, it is important to 

recognize species-specific resilience to acidification. For example, a recent study comparing the 

effects of acidification on larval mussels found there to be no difference in development and 

growth between mussels pre-adapted to areas that experience season upwelling—and therefore 

high spatial and temporal carbonate chemistry variability— and those local to an area without 

upwelling (Waldbusser et al. 2015a). 

While many calcifying organisms will be negatively affected by acidification, some 

autotrophs may benefit from rising concentrations of seawater CO2 by increasing photosynthesis 

and growth (Kroeker et al. 2010, 2013, Koch et al. 2013). The positive effects of increasing CO2 

on organisms such as macrophytes have spurred research investigating the potential mitigating 

effects of seagrass photosynthesis on acidification (Unsworth et al. 2012, Manzello et al. 2012, 

Hendriks et al. 2014). OA mitigation by seagrass specifically refers to the removal of CO2 from 

seawater, which raises the pH and reduces the TCO2 (i.e., sum of all forms of carbonic acid and 

its conjugate bases), minimizing unfavorable carbonate chemistry prevalence (Marbà 2006, 

Unsworth et al. 2012). The premise of seagrass as OA refuge originates from evidence indicating 
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that in near-shore, shallow coastal waters, most seagrass systems tend to be net autotrophic, 

sequestering large amounts carbon (Duarte et al. 2010, 2011, Unsworth et al. 2012). Net 

autotrophic seagrass systems, however, foster enhanced rates of respiration, due to the 

accumulation of allochthonous organic matter within their canopies, and from dark respiration by 

seagrass themselves; this results in a biologically dominated carbonate system with high 

variability on a diurnal scale (Koch et al. 2006, Duarte et al. 2013, Hendriks et al. 2014, 

Waldbusser and Salisbury 2014, Wallace et al. 2015).  

Three different mechanisms, or a combination of, appear to act as the primary means for 

TCO2 uptake: direct CO2 uptake from the DBL, carbonic anhydrase (CA) secretion in to the cell 

wall which dehydrates bicarbonate (HCO3
- + CA à CO2), and symport of HCO3

- via proton 

pumping (Beer et al. 2002, Larkum 2006, Koch et al. 2013). In addition, studies have found that 

increases in seawater TCO2 can enhance seagrass photosynthesis, growth, biomass, and tissue 

thickness (Beer and Koch 1996, Thom 1996, Zimmerman 1997, Kroeker et al. 2013, Koch et al. 

2013, Cox et al. 2016). These findings are not universal, however, and the capacity of TCO2 

uptake by seagrass varies by species, geographical location, distribution depth, and the process 

by which TCO2 moves across the diffusive boundary layer (DBL) and cell wall (Larkum 2006, 

Lee et al. 2007, Koch et al. 2013). Due to species-specific physiology, the full potential and 

ability to uptake TCO2 varies, as evidence shows mixed results of HCO3
- saturation points and 

changes in photosynthetic rate when exposed to high TCO2 levels under replete and limited light 

intensities (Beer and Koch 1996, Zimmerman et al. 1997, Palacios and Zimmerman 2007, Invers 

et al. 2001, Ow et al. 2016, Cox et al. 2016). Even though ambiguity remains regarding the 

mechanisms and degree of TCO2 uptake, studies have determined that most seagrass species are 

carbon limited at present day TCO2 levels (Larkum 2006 and references therein, Koch et al. 
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2013, Hendriks et al. 2014). The apparent TCO2 limitation of seagrasses, therefore, has 

implications for how individual species will respond to a globally increasing TCO2 baseline, 

which will likely alter the photosynthetic potential, and affect the amelioration of OA by 

seagrasses. 

Numerous studies have examined the long-term carbon sequestration potential of 

seagrass beds (Duarte et al. 2005, 2011, Chung et al. 2011, McLeod et al. 2011, Fourqurean et al. 

2012, Marbà et al. 2015, Poppe 2015). While burial determines long-term effects of seagrass on 

carbon cycling, it does not drive OA-mitigation potential on short timescales; rather, 

instantaneous photosynthetic rates are more relevant. Short-term carbon drawdown on the hourly 

scale coincides with timescales of rapid development for calcifiers, for whom sensitivity to OA 

is driven by the duration and intensity of exposure (Kurihara 2008, Talmage and Gobler 2009, 

Hettinger et al. 2012, Waldbusser et al. 2015b). The continued uptake of CO2 by surface waters 

will increase the baseline CO2 affecting the frequency, duration, and magnitude of acidification 

events in coastal waters (Harris et al. 2013, Hauri et al. 2013, Waldbusser and Salisbury 2014). 

That is, increasing the duration and magnitude of carbonate chemistry variability will likely 

result in conditions that periodically surpass physiological thresholds of resident organisms that 

already exist at their tolerance limits (Grantham et al. 2004, Waldbusser and Salisbury 2014). 

Seagrasses, however, may be able to improve times of favorable carbonate chemistry, or dampen 

episodic extremes of unfavorable carbonate chemistry on hourly timescales, thus lessening the 

duration and magnitude of exposure to extreme acidification. 

  In the U.S. Pacific Northwest (PNW) where OA mitigation initiatives have been 

established for the Salish Sea, seagrasses have been specifically identified as a biological means 

to offset the effects of acidification (Blue Ribbon Panel on Ocean Acidification 2012). Two 
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seagrass species found in the Salish Sea: native Zostera marina L. and non-native Zostera 

japonica Ascher. & Graeb. have strong habitat-association with organisms vulnerable to OA 

(Harrison 1982a, Ferraro and Cole. 2012, Mach et al. 2014, Dumbauld and McCoy 2015). 

Whereas Z. marina has been the focus of many studies examining its high photosynthetic rate 

(Lee et al. 2007) and response to TCO2 increase (Beer and Koch 1996, Thom 1996, Zimmerman 

et al. 1997, Koch et al. 2013), little work has been done investigating Z. japonica photosynthesis 

and physiology for established PNW populations (Shafer et al. 2011, Shafer and Kaldy 2014, 

Kaldy et al. 2015). In the Salish Sea, Z. japonica occurs in the mid to upper intertidal zone where 

it has transformed previously unvegetated mudflats via continued expansion of its distribution, 

and has thus been labeled as a noxious weed in Washington state (NWCB 2012, Thom et al. 

2014). Conversely, Z. marina is a protected species with a distribution extending from the lower 

intertidal to shallow subtidal region: species overlap with Z. japonica can occur in the lower 

intertidal zone on flat shorelines (Harrison 1982a, Thom 1990, Ruesink et al. 2010, Thom et al. 

2014). Despite Z. japonica’s designation as a noxious weed in Washington state, studies have 

highlighted that the non-native seagrass provides many of the benefits associated with other 

seagrasses, including predator protection, sediment stability, and enhanced community 

productivity and diversity (Orth et al. 1984, Duffy 2006, Wonham and Carlton 2005, Mach et al. 

2014). Given the potential of Z. japonica to colonize unvegetated habitat and, thus, increase the 

expanse of seagrass meadows, it is relevant to consider how the photosynthetic potential of Z. 

japonica—in addition to Z. marina—impacts and interacts with the carbonate system, given that 

seagrass OA mitigation is a focus in the Salish Sea (Blue ribbon panel on ocean acidification 

2012)  
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To better understand how Z. marina and Z. japonica may mitigate the effects of 

acidification, studies investigating the photosynthetic potential and efficiency in response to 

TCO2 increase are needed. A recent study comparing Z. marina and Z. japonica photosynthesis 

found that Z. japonica has a higher photosynthetic rate; however, the results are specific to 

populations on the central Oregon coast (Shafer and Kaldy 2014), and geographical location 

most be considered as local adaptations exists throughout a species’ distribution (Backman 1991 

and references therein). Given the importance of site-specific physiology, we investigated the 

differential responses of photosynthetic rates over a spectrum of irradiance and seawater TCO2. 

Specifically, we conducted one experiment per species to examine the (1) potential differences in 

photosynthetic rates between Z. marina and Z. japonica, (2) how changes in TCO2 affect 

photosynthetic rates, and (3) how the photosynthetic potential is likely to induce hourly changes 

on the carbonate system.   

 

Methods 

 Sample Site and collection. Padilla Bay, Washington, is a tidally dominated estuary in the 

Salish Sea, and is a part of the National Estuarine Research Reserve System (48° 31' 14.1" N, 

122° 35' 24.4" W). The Z. marina and Z. japonica beds in Padilla Bay are considered to be one 

of the most contiguous stands on the North American Pacific Coast, constituting a submerged 

and emergent total area of ~4,000 ha, where Z. marina accounts for ~3,000 of the total area 

(Bulthuis 2013). In the lower intertidal region where Z. japonica distribution diminishes and 

transitions to Z. marina moving offshore, the morphological difference of Z. japonica is 

conspicuous, with a surface area and mass that is ~5x less than that of Z. marina when 

comparing equal length segments. In the lower intertidal where species overlap occurs, a 250 m 
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transect was marked for shoot collection two weeks prior to sampling. (48° 29' 36.6” N, 122° 29' 

8.5” W). Two HOBO Pendant Temperature/Light 64k data loggers were attached ~1 m above the 

sediment on transect marking poles for the purpose of obtaining irradiance data at the elevations 

where Z. japonica and Z. marina co-occur (average tidal height of two consecutive sunny days 

used in analysis ranged from -0.55 – 3.0 m MLLW). Light sensors logged irradiance for ~12 

days before they were collected from the field.  

Healthy-looking adult Z. marina shoots with intact rhizomes were collected by hand 

during low tide (0.8 m MLLW) on August 16, 2015 from Padilla Bay along the entire 250 m 

transect. Ten days later (2nd experiment) on August 26, 2015, adult Z. japonica shoots with intact 

rhizomes were collected in the same manner at low tide (~0.0 MLLW). Approximately 200 

shoots of each species were collected, placed in a cooler, and transported to Shannon Point 

Marine Center in Anacortes, Washington, within 1 hour of collection. One hundred of the most 

healthy looking 200 shoots (i.e., shoots without visible damage and well preserved rhizomes) 

were then haphazardly selected, rinsed with seawater, and dispersed among four separate 40-liter 

acrylic flow through tanks under low irradiance (~50 umol photons m-2 s1) on a 12:12 L:D cycle 

for ~48 hours before experimentation. The 48 hour holding period also served the purpose of 

acclimating shoots to a slightly higher salinity than found at collection site: ~28 – 29 PSU.    

 

 Experimental system. A light fixture housing five T5 high output 54W 6500K Spectralux 

bulbs was mounted to the bottom of a box with one open side, and was used as the experimental 

chamber for both experiments. A 5/8” clear acrylic sheet covered the top of the light fixture. 

Five, shallow, three-sided clear acrylic boxes (56.5 x 7.62 x 3.81 cm) fitted with flow through 

seawater taps were mounted to the acrylic sheet and placed directly above an individual bulb in 
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the fixture. Shallow acrylic boxes served as water baths to stabilize temperature, and as position 

holders for incubating vials (Fig. 1). 20 ml borosilicate scintillation vials with a polyethylene 

cone-shaped liner were used as incubation vessels, and were nearly fully submerged (water line 

stopped at cap) when placed in acrylic water baths. Vinyl mesh wraps were constructed and 

fitted to scintillation vials to attenuate light. Mesh covers either had one, three, or six layers, 

which provided an irradiance range from ~40 – 500 µmol photons m-2 s-1.  

 Seawater pumped from Guemes Channel was collected, 0.2 µm filtered, sterilized via 

autoclave, and distributed into five, 20 L polycarbonate carboys. To manipulate CO2, carboys 

were fitted with custom plumbed lids for gas exchange, and bubbled with a controlled (Sierra 

SmartTrak mass flow controller) mixture of compressed ambient air stripped of CO2 using a 

regenerative molecular sieve adsorber (Twin Tower Engineering, CAS2-11), and research grade-

5 pure CO2 gas for ~72 hours before use. Carboys were held in an incubator which maintained 

water temperature at approximately ambient in Guemes Channel: 12.5°C. One liter Nalgene 

bottles half-way filled with tap water acted as humidifiers, which were plumbed in between gas 

lines and carboys to minimize the evaporation that occurs when the compressed, dry, and 

stripped CO2 air is streamed through the system.  
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Figure 1. Experimental setup. Light bulbs illuminate from under clear acrylic sheet. Five clear 
acrylic trays with flow through seawater taps served as water baths that housed experimental 
vials. Total of 150 vials per experiment: 5 light and 5 pCO2 conditions yield 25 treatments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   

Light source   5x

Water bath     5x

Vials

Acrylic sheet
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Experimental Design. Leaf segments harvested from shoots served as the experimental 

unit for both experiments. Approximately 20 hours before experimentation, the middle section of 

the second youngest leaf in a shoot was selected, wiped clean of epiphytes, and a 2 cm segment 

for Z. marina and 4 cm segment for Z. japonica was excised. It should be noted that while the 

middle section of the leaf was selected for, variation among shoots regarding the overall length of 

the 2nd youngest leaf existed. Each segment was then cut in half with one segment frozen for 

chlorophyll extraction, and the other placed into a 20 ml scintillation vial filled with 5 ml of 

filtered and sterilized seawater. Leaf segment stocked vials were then held in an incubator at 12°C 

until experimentation. 

We used a  5 x 5 factorial design that targeted 25 treatment combinations with an 

estimated irradiance and pCO2 range of ~750, 500, 200, 40, 0 µmol photons m-2 s-1 and  ~100, 

250, 400, 650, and 900 µatm, respectively. Experimental design consisted of quadruplicate 

replication and duplicate blanks. Blanks mimicked experimental conditions but lacked leaf 

segments, and were used to account for any changes in seawater chemistry induced by microbial 

activity that may have remained after filtration and sterilization.  The design resulted in a total of 

100 leaf segments and 50 blanks per experiment. Light intensities for treatment values were based 

on deployed HOBO light pendants at marked transect, and pCO2 values were selected given the in 

situ variability of the carbonate system in Padilla Bay (Love et al. 2016).  

 Immediately before each experiment, stocked vials were emptied of filtered seawater, 

rinsed and filled with treatment seawater. Vials were overflowed to eliminate headspace, and a 

0.5-mm glass bead was placed in each vial for the purpose of stirring the seawater. Filled and 

stocked vials were pre-assigned mesh coverings (no mesh, 1 layer, 3 layer, 6 layer, or opaque) to 

achieve desired irradiance levels for each leaf segment. Vials were haphazardly placed into water 
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baths inside lit experimental chamber and incubated for 90 minutes until termination of 

experiment began. Vials were physically inverted by hand, three times, every five minutes to stir 

water inside and prevent an oxygen rich and TCO2 poor boundary layer around leaf segments. 

Photographs of all vials during the experiment where taken in order to identify the exact position 

and irradiance emitted at a given spot—irradiance measurements were then taken after the 

experiment by placing treatment vials back in water baths at their respective locations. Irradiance 

was measured at each vial location with a QSL-101 PAR irradiance sensor (Biospherical 

Instruments Inc.).  

 

 Photosynthetic measurements. Photosynthetic rates as a function of irradiance and 

seawater pCO2 were determined by incubating excised leaf segments of Z. marina and Z. 

japonica and measuring seawater TCO2 before and after incubation. During incubation, 

temperature in water baths was continuously monitored and recorded every 20 minutes with a 

Fluke 1523 reference thermometer and probe. Initial conditions of carbonate chemistry were 

determined for each pCO2 treatment by collecting triplicate 350 ml total alkalinity (TA) samples 

in amber glass bottles with polyurethane-lined crimp-sealed metal caps, and triplicate 20 ml 

samples in scintillation vials for TCO2 concentration from treatment seawater held in the 20 L 

carboys (Table 1). All initial condition TCO2 and TA samples were measured for temperature 

and salinity (measured with refractometer), poisoned with either 30 or 10 µl of HgCl2 (TA or 

TCO2), capped, wrapped with parafilm to minimize any potential gas leakage, and refrigerated at 

2°C until analysis. Salinity ranged from 30.5 – 32 0/00 for the Z. japonica experiment (Table 1). 

The variation was likely a result of unequal effectiveness by the humidifiers during bubbling, or 
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from differential evaporation in autoclaved bottles used to fill carboys, thus resulting in 

dissimilar evaporation rates in each of the carboys. 

To terminate the experiment, vials were removed one at time haphazardly across 

treatments, but ordinally by replicate assignment—this allowed for an equal experimental 

termination time across treatments. Each leaf segment was removed from a vial, marked for 

incubation time, and stored in an empty vial for later dry-weight measurement. The experimental 

vial was immediately poisoned with 10 µl of a saturated HgCl2 solvent, capped, wrapped with 

parafilm, and refrigerated at 2°C.  

 All TCO2 samples were analyzed within 5 days of each experiment. TCO2 for each 

sample was quantified using an Apollo SciTech AS-C3 dissolved inorganic carbon (DIC) 

analyzer by drawing 0.75 ml samples from the 20 ml scintillation vial 3 – 5 times until two 

consecutive measurements with a difference no greater than 5 µmol kg-1 was measured. TA 

samples were titrated within 30 days of experiment using the open-cell method as in Dickson et 

al. (2007) with a Metrohm 888 Titrando. Certified reference material for both TCO2 and TA 

analyses was used to construct a five-point standardization curve and verify accuracy of open-

cell titration, respectively (Batch 144, A.G., Dickson, Scripps Institute of Oceanography). The 

partial pressure of CO2 (µatm) and associated carbonate system parameters pH (total) and 

aragonite saturation state (Ωar) were calculated using CO2SYS (Pierrot et al. 2006) with K1 and 

K2 equilibrium constants from Mehrbach et al. (1973) and refit by Dickson and Millero (1987).  

 Leaf segments from the experiment were rinsed 3x with deionized water and dried at 

55°C for at least 24 hours before dry mass was recorded. Frozen leaf segments were prepped for 

chlorophyll extraction by sonicating for 30 seconds in a 10 ml 90% acetone solution. Segments 

were then refrozen at -20°C for 24 hrs. and centrifuged for five minutes directly before 
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chlorophyll measurement. Extract was measured with a Trilogy fluorometer (Turner designs), 

acidified with 0.1 N HCl, and measured again. Chlorophyll and phaeopigment concentrations 

were calculated following the methods described by Lorenzen (1966).   

 

 Statistical methods and photosynthetic response. Photosynthetic rate as a function of 

irradiance (P vs. E) was normalized to chlorophyll (a/b) to minimize variance in photosynthetic 

pigment content between shoots. P vs. E curves were fit and photosynthetic parameters estimated 

using the non-linear hyperbolic tangent function described by Jassby and Platt (1976): 

(1)  𝑃 =   𝑃!"# tanh
!"

!!"#
+ 𝑅!   

where Pmax is the maximum photosynthetic rate (µmol TCO2 mg chl-1 hr-1), I is the irradiance 

(µmol photons m-2 s-1), Rd is the dark respiration rate, and α (photosynthetic efficiency) is the 

initial slope of the photosynthetic curve (µmol TCO2 mg chl-1 hr-1 (µmol photons m-2 s-1)-1).  

  A multi-dimensional model was fit to determine the combined effects of irradiance and 

TCO2 on photosynthetic rate using the function: 

(2)  𝑃 =   𝑃!"# tanh
!"

!!"#
+ 𝑅!   + 𝛽[𝑇𝐶𝑂!]  

where TCO2 is the initial concentration of  DIC (µmol TCO2 kg-1) for each pCO2 treatment, and 

β is the slope corresponding to the observed linear response of photosynthetic rate to the 

measured TCO2 concentration. A linear response of photosynthetic rate to TCO2 concentration 

was a more accurate predictor than a non-linear function given the range of our experimental  

TCO2 concentrations. The estimated maximum photosynthetic rate (Pmax) and photosynthetic 

efficiency (α) from the model output was used to calculate the saturation irradiance:  

    (3)    𝐼! =   
!!"#
!
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where Ik is the saturation irradiance and Pmax and α the outputs from the two-parameter model 

(eq. 2). Pmax values across all treatments were then plotted as a function of initial TCO2 

concentration and statistically analyzed using an ANCOVA to determine any significant 

differences in species’ response. In addition, the constructed two-parameter non-linear model 

(equation 2) was used to predict the hourly photosynthetic potential of each species in Padilla 

Bay by inputting the in situ irradiance data from the field and the initial TCO2 concentrations 

from the experiments. The predicted photosynthetic rate (µmol TCO2 mg chl-1 hr-1) from the 

model output was then used to associate the change in TCO2 to the potential change in pH and 

Ωar over a diurnal light period.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   15	  

Table 1. Initial conditions for both Z. marina and Z. japonica experiments. Measured mean 
values and standard deviation of TA, TCO2, temperature, salinity, and calculated values pH 
(total), and aragonite saturation state (Ωar). 

Experiment 
 

pCO2 
treatment 

TCO2  
(µmol kg-1) 

TA  
(µmol kg-1) 

pCO2  
(µatm) 

pH 
(total) 

Ωar 
 

Temp. 
 °C 

Sal. 
0/00 

Z. marina 140 1779 ± 2.7 2157 ± 15 140 ± 4.4 8.40 ± 0.01 4.0 ± 0.0 14.2 ± 0.8 32 

 
250 1873 ± 4.5 2157 ± 6.3 225 ± 4.0 8.24 ± 0.01 3.0 ± 0.1 14.4 ± 0.6 32 

 
400 1972 ± 1.8 2141 ± 7.4 421 ± 6.6 8.01 ± 0.01 1.9 ± 0.0 14.0 ± 0.2 32 

 
650 2083 ± 2.1 2197 ± 5.5 652 ± 18 7.85 ± 0.01 1.4 ± 0.0 14.4 ± 0.3 32 

  900 2106 ± 1.5 2180 ± 1.2 863 ± 15 7.73 ± 0.01 1.1 ± 0.0 14.1 ± 0.3 32 
Z. japonica 140 1770 ± 6.1 2147 ± 6.2 138 ± 1.8 8.41 ± 0.00 3.9 ± 0.1 14.0 ± 0.5 32 

 
250 1868 ± 1.1 2147 ± 2.1 214 ± 4.8 8.26 ± 0.01 3.0 ± 0.0 13.6 ± 0.4 31 

 
400 1956 ± 1.5 2127 ± 1.9  393 ± 8.4 8.03 ± 0.01 1.9 ± 0.0 13.6 ± 0.4 31 

 
650 2018 ± 0.8 2113 ± 6.2 684 ± 9.6 7.81 ± 0.01 1.2 ± 0.0 13.5 ± 0.3 32 

  900 2051 ± 1.7 2103 ± 3.2 918 ± 15 7.70 ± 0.01 0.9 ± 0.1 13.2 ± 0.1 30.5 
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Results 

Incubation conditions. Experimental conditions for the leaf segment incubations were 

similar between experiments (Table 1). Temperature averaged 13.2 ± 0.4°C, increasing slightly 

over the duration of the Z. marina experiment, but remained stable at 13.4 ± 0.1°C for the Z. 

japonica experiment. Any possible confounding effect of temperature on photosynthetic rate was 

likely captured within the treatment variance due to the ordinal manner in which replicate vials 

were terminated. The pCO2 of the treatments did not match that of the equilibrating gas, which 

ranged from 100 – 1200 µatm (see Table 1 for actual pCO2), however, the treatment values did 

produce a large range in TCO2 and were similar across both experiments. Actual pCO2 values 

will be referred to henceforth as treatment values and for all calculations. The high pCO2 

treatment had the greatest difference between experiments, resulting in a pCO2 that was 55 µatm 

higher for the Z. japonica experiment than for the Z. marina experiment (Table 1). It should be 

noted that sample size by treatment varied from 20 – 17 (Table 2) due to either loss of a sample 

or dissolved inorganic carbon analyzer malfunction. 

 

 P vs. E curves. The net photosynthetic rates for Z. marina and Z. japonica were 

characteristic of autotrophs (Fig. 2a-e), increasing photosynthetic rate with irradiance, and 

reaching an asymptote once light was saturating. The hyperbolic tangent function described by 

Jasspy and Platt (1976) fit the general trend of the P vs. E curves (eq. 1), but the photosynthetic 

parameters Pmax and α predicted from the model were not well constrained due to the high 

variance within pCO2 treatments (Table 2). The robustness of the overall model fit for all 

treatments was low as indicated by a high RMSE (Fig. 2a-e, Table 2). A conspicuous trend of 

increasing photosynthetic rate by Z. japonica with increasing TCO2 was observable. The 
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estimated Pmax for Z. japonica was greater than Z. marina when normalized to chlorophyll, with 

a difference that increased from 0 – 62 µmol TCO2 mg chl-1 hr-1 as target treatments increased 

from 140 – 650 µatm (Fig. 2a-e). When normalized to dry-weight, however, there was no 

observable difference in Pmax or α between species, and variance was considerably larger than 

when normalized to chlorophyll (Appendix A). While we acknowledge that biomass-normalized 

results may suggest different conclusions than data normalized to chlorophyll, we choose to 

focus our discussion on the data with chlorophyll standardization because of the microscale 

changes that are present in photosynthetic pigment content along a leaf (Enríquez et al. 2002). 

 Respiration rates determined from the darkened and opaque vials were not statistically 

different across pCO2 treatments (Appendix B). There was high variance and net photosynthesis 

occurring within the darkened treatment replicates for both species (Fig. 2a-e, Appendix C). We 

were, therefore, not able to quantitatively predict respiration rates from our model fit. 
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Table 2. Predicted photosynthetic parameters from hyperbolic tangent model (Eq. 1) where Pmax 

is the maximum photosynthetic rate, α is the photosynthetic efficiency, and Rd is the respiration 
rate normalized to mg chl. Errors are 95% CI for individual parameters, and the root mean square 
error (RMSE) of the model fit.   
 

 
 
 
 
 
 
 
	  
 
 
 
 
 
 
 
	  
 
 
 
 
 
 
 
	  
 
 
 
 
 
 
 
	  
 
 
 
 
 
 
 
	  
 
 
 
 
 
 
 
	  
 
 
 
 
 

Species  pCO2 treatment Pmax α Rd n RMSE 

Z. marina 140 137 ± 59 0.651 ± 0.60 11.9 ± 43 20 48.3 

 
250 142 ± 103 0.324 ± 0.48 1.42 ± 32 18 34.2 

 
400 115 ± 39 2.18 ± 1.8 −12.0 ± 34 20 32.1 

 
650 94.8 ± 37 0.469 ± 0.45 4.53 ± 27 20 30.8 

  900 138 ± 60 2.78 ± 3.4 −3.41 ± 52 20 51.3 
Z. japonica 140 283 ± 88 3.01 ± 2.2 −50.5 ± 73 20 74.2 

 
250 406 ± 181 10.3 ± 11 −96.2 ± 153 17 143 

 
400 368 ± 175 4.06 ± 7.6 60.5 ± 141 18 152 

 
650 448 ± 254 4.41 ± 7.3 69.8 ± 210 19 216 

  900 337 ± 151 4.91 ± 5.2 21.2 ± 130 19 123 
 
Units: Pmax and Rd = µmol TCO2 mg chl-1 hr-1; α = µmol TCO2 mg chl-1 hr-1 (µmol photons m-2 s-

1)-1. 
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a.             b. 

       

c.              d. 

      
e. 
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Two-parameter photosynthesis model. Net photosynthetic rates were collated across 

treatments for both species and fit to the combined hyperbolic tangent and linear functions 

describing the observed relationship of photosynthesis to irradiance and TCO2, respectively (Fig. 

3, Eq. 2). Using the entire data set and incorporating irradiance and TCO2 resulted in a more 

robust prediction of the photosynthetic parameters, and a clear delineation of the species’ 

differential response (Fig. 4). Z. japonica  displayed a Pmax of 360 ± 74 µmol TCO2 mg chl-1 hr-1 

and an α of 3.62 ± 2.1 µmol TCO2 mg chl-1 hr-1 (µmol photons m-2 s-1)-1 where the error is the 

95% CI (Table 3). Both Pmax and α were significantly higher for Z. japonica than for Z. marina, 

which had a Pmax of 113 ± 21 µmol TCO2 mg chl-1 hr-1 and an α of 0.840 ± 0.42 µmol TCO2 

mg chl-1 hr-1 (µmol photons m-2 s-1)-1 where the error is the 95% CI (Table 3, Fig. 4). Pmax for Z. 

japonica was 3x greater than Z. marina Pmax, and α was 4x greater, indicating an overall higher 

maximum photosynthetic rate and efficiency for Z. japonica on a per chlorophyll basis. In 

addition, Z. japonica displayed a lower Ik at 99 (propagated SE = 31) µmol photons m-2 s-1, 

which was ~ 75% of Z. marina’s Ik of 131 (propagated SE = 35) µmol photons m-2 s-1
. Error for 

both Ik values is the propagated standard error from model predicted Pmax and α (Eq. 3).  

 TCO2 concentration and the TCO2 species interaction were both significant predictors of 

Pmax (Table 4). The ordinal interaction between TCO2 and species indicates a differential species’ 

response of Pmax to increasing TCO2. The mean Pmax of Z. japonica increased linearly with TCO2 

across all treatments, whereas Z. marina Pmax appeared constant with increasing TCO2 (Fig. 5). 

Since there was an interaction effect between the main effects TCO2 and species, and no 

observable response of Z. marina to increasing TCO2, further analysis was warranted. A one-way 

ANOVA examining the effect of initial TCO2 on Pmax determined there was a significant 

difference in mean Pmax between initial TCO2 concentrations for Z. marina: F4,53 = 3.01, p = 
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0.0258). Given the high degree of variability and low F-ratio, however, Z. marina’s Pmax 

response to TCO2 remains unclear based on our findings. Z. japonica’s Pmax increased by ~150 

µmol TCO2 mg chl-1 hr-1 over the range of initial TCO2 concentrations (Fig. 5). The increase in Z. 

japonica Pmax to increasing TCO2 resulted in a broadening separation of the maximum 

photosynthetic rate potential between the two species at higher TCO2 conditions (Fig. 5).  
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a. 

      
b. 

 

Figure 3. Net photosynthetic rate across all pCO2 treatments for (a) Z. marina and (b) Z. 
japonica as a function of irradiance and TCO2. TCO2 values are initial concentrations 
corresponding to each pCO2 treatment (Table 1).  
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Table 3. Predicted photosynthetic parameters from non-linear regression model (Eq. 2) with 
irradiance and TCO2 as independent variables. β is the slope of linear relationship between 
photosynthetic rate and initial TCO2 concentrations. Total sample size for Z. marina and Z. 
japonica: n =98 and n = 93, respectively.  
 

Species Parameter Estimate SE 95% CI tstat p-value 

Z. marina Pmax 113 10.7 21.3 20 48.3 

 
α 0.840 0.211 0.420 18 34.2 

 
Rd 24.7 69.6 138 20 32.1 

  β  −0.011 0.035 0.069 −0.327 0.745 
Z. japonica Pmax 360 37.2 73.9 9.68 < 0.001 

 
α 3.62 1.06 2.12 3.40 0.001 

 
Rd −1185 286 568 −4.15 < 0.001 

  β  0.613 0.147 0.292 4.18 < 0.001 
 
Units: Pmax and Rd = µmol TCO2 mg chl-1 hr-1; α = µmol TCO2 mg chl-1 hr-1 (µmol photons m-2 s-

1)-1. 
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Figure 4. P vs. E curves for Z. marina (open circles) and Z. japonica (closed squares) for all net 
photosynthetic rates collated from every pCO2 treatment.  
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Table 4. ANOVA table from ANCOVA analysis examining Pmax values with main effects TCO2 
and species. 
 

Source d.f. Sum Sq F-stat. p-value 

Species 1 1.60E+06 109 < 0.001 

TCO2 1 1.27E+05 8.67 0.004 

Species*TCO2 1 1.96E+05 13.4 < 0.001 
Error 109 1.60E+06 � � 
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Figure 5. Maximum photosynthetic rate (Pmax) of Z. marina (open circles) and Z. japonica 
(closed squares) as a function of initial TCO2 concentration. Initial TCO2 concentrations 
correspond to each pCO2 treatment (Table 1). Pmax values are photosynthetic rates above Ik, 
which was predicted from the model fit for Z. marina (131 µmol photons m-2 s-1) and Z. japonica 
(99 µmol photons m-2 s-1). 
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 Model predictions and field irradiance. Irradiance data from the field, and average TCO2 

concentrations from both experiments (1972 µmol kg-1 for Z. marina and 1956 µmol kg-1 for Z. 

japonica) corresponding to the median 400 pCO2 treatment were input into the two-parameter 

photosynthesis model to estimate the hourly change in photosynthetic rate for both species in 

Padilla Bay. The predicted net photosynthesis for Z. japonica reached a maximum of 379 µmol 

TCO2 mg chl-1 hr-1 and 115 µmol TCO2 mg chl-1 hr-1 for Z. marina for ~6 hours; this indicates 

that saturating irradiance for both species likely occurs from ~12:00 until ~18:00 during mid to 

late summer (Fig. 6). The upper and lower bounds are the predicted photosynthetic rate for Z. 

japonica if TCO2 concentrations were 2051 µmol kg-1 and 1771 µmol kg-1, which correspond to 

the high (pCO2 ~900) and low (pCO2 ~140) treatments, respectively (Fig. 6).  

 The predicted photosynthetic rate (µmol TCO2 mg chl-1 hr-1) over a diurnal period was 

used to estimate the change in TCO2 from a starting point of 1964 µmol kg-1. These values were 

then used to determine the associated change in pH and Ωar mg chl-1 hr-1 assuming a constant TA 

(Fig. 7). A combined average TA of the 400 pCO2 treatment for both experiments was used for 

all calculations. Z. japonica induced a maximum change in pH of 0.65 units mg chl-1 hr-1 at a 

Pmax of 379 µmol TCO2 mg chl-1 hr-1. The induced change in pH by Z. japonica was ~0.4 units 

higher than the 0.25 pH unit change associated with Z. marina’s Pmax of 115 µmol TCO2 mg chl-1 

hr-1 (Fig. 7). The Ωar change associated with the projected maximum photosynthetic rate for both 

species resulted in a change of 3.8 and 1.1 mg chl-1 hr-1 for Z. japonica and Z. marina, 

respectively. It should be noted that the change in pH was determined from the change in TCO2 

from a single seagrass segment in a 20 ml vial, and estimations beyond this scale are likely 

erroneous. We, therefore, present the change in pH and Ωar as the maximum potential possible 
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based on our findings, where extrapolation is constrained within direct proximity to a portion of 

a seagrass leaf.  

  

  

 

 

 

 

 

 

 

 

 



	   29	  

  

Figure 6. Predicted mean net photosynthetic rate for Z. japonica (-) and Z. marina (--) under 
ambient irradiance at mean initial TCO2 concentration of 1964 µmol kg-1. Shaded region is the 
95% CI. Upper (red) and lower (yellow) bounds are the predicted net photosynthetic rate of Z. 
japonica at initial TCO2 concentrations of 2051 and 1770 µmol kg-1, respectively. 
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a. 

 

b. 

 

Figure 7. Change in pHtotal (a) and Ωar (b) at the predicted mean net photosynthetic rate for Z. 
japonica (-) and Z. marina (--) under ambient irradiance. Shaded regions are the 95% CI for 
photosynthetic rate. 
 

00:00 04:00 08:00 12:00 16:00 20:00 00:00
HH:MM

-50

0

50

100

150

200

250

300

350

400

450

P
ne

t 7
m

ol
 T

C
O

2 m
g 

ch
l-1

 h
r-1

"
pH

 m
g chl -1 hr -1

Predicted -  Z. japonica
Predicted - Z. marina

00:00 04:00 08:00 12:00 16:00 20:00 00:00
HH:MM

-50

0

50

100

150

200

250

300

350

400

450

P
ne

t 7
m

ol
 T

C
O

2 m
g 

ch
l-1

 h
r-1

"
+

 m
g chl -1 hr -1



	   31	  

Discussion 

Species-specific photosynthetic rate and TCO2 uptake are critical components that 

determine the capacity of seagrasses to remove dissolved CO2 and, thus, the potential of seagrass 

beds as OA refugia. This study examined the photosynthetic potential of co-occurring Z. marina 

and Z. japonica seagrasses to a range of TCO2 concentrations. Our results indicate that Z. 

japonica photosynthesis has a robust response to moderate increases in TCO2, whereas Z. marina 

photosynthesis displays a minor or null response to the TCO2 concentrations tested (~1770 – 

2100 µmol kg-1). These findings help elucidate how TCO2 dependent instantaneous 

photosynthetic rates of Z. marina and Z. japonica will affect the carbonate system, and what 

implications exist for potential OA mitigation on short timescales. That is, if seagrasses are to 

mitigate the effects of acidification on vulnerable organisms, the timing of TCO2 uptake and shift 

in favorable carbonate chemistry must be congruent with the organismal life-stages that are most 

sensitive to acidification. For example, recent studies have shown that the initial shell formation 

of Crassostrea gigas occurs in a matter of hours, and unfavorable carbon chemistry affects the 

development and growth of some bivalves and gastropods during the first 48 hours post-

fertilization (Onitsuka et al. 2014, Waldbusser et al. 2015b). Instantaneous photosynthetic rates 

occurring on the hourly timescale, therefore, can correspond directly to the time period of shell 

formation for some bivalves, and have the potential to dampen the magnitude and exposure 

duration to acidification.  

   

Instantaneous photosynthesis. The instantaneous photosynthetic rates measured indicate 

that non-native populations of Z. japonica in Padilla Bay have a maximum net photosynthetic 

rate and efficiency that is ~3 and 4.5-fold higher, respectively, than Z. marina occurring in the 
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same intertidal spatial zone when considered on a per chlorophyll basis. We did not observe 

inter-species differences when standardized to biomass (App. Table 2). Whereas the exact 

mechanism responsible for the discontinuity between standardization methods is not clear, 

standardizing to chlorophyll is more appropriate given the strong gradient in chlorophyll along a 

leaf and among shoots, which may correspond to changes in surface area and, therefore, pigment 

concentration (Zimmerman et al. 1997, Enríquez et al. 2002, Larkum et al. 2006 and references 

therein). Given that changes in thickness of the tissue can affect chlorophyll to biomass ratio 

(Enríquez et al. 1994), photosynthetic rate standardized to biomass may account for spatial 

variation in chlorophyll and how light is absorbed.  

Similarly, a previous study comparing PNW populations of Z. marina and Z. japonica 

also found that Z. japonica has a maximum photosynthetic rate that is ~3-fold higher than Z. 

marina, when exposed to the same light conditions (Shafer and Kaldy 2014). The chlorophyll 

standardized rates reported in that study and in Shafer et al. (2011), however, were considerably 

lower than what we report (Fig. 2a-e). Differences in chlorophyll extraction methods, or 

inefficient extraction may have resulted in the higher photosynthetic rates found in our study. 

Additional factors such as intertidal location, canopy density, time of year, acclimatization to 

epiphytic growth, and age can also affect pigment concentration and photoacclimation amongst 

shoots and along leaves (Dennison and Alberte 1986, Major and Dunton 2002, Enríquez et al. 

2002, Duarko and Kunzelman 2002, Drake et al. 2003, Cummings and Zimmerman 2003, 

Larkum 2006 and references therein), which may further explain the dissimilarity in rates. Local 

acclimatization to in situ temperature and salinity can also impact photosynthetic rates via 

osmotic stress and changes in the photosynthesis-respiration ratio (Kenneth and Short 2006 and 

references therein). In addition, our study examined photosynthetic rates by measuring the 
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change in TCO2, which to our knowledge, has not been done before in the lab and rarely done in 

the field despite the robustness of the method (Silva et al. 2009). The photosynthetic quotient 

(O2/CO2), while assumed to be unity or close to in many studies, is based on community 

metabolism in seagrass beds or meadows (Oviatt et al. 1986, Leuschner and Rees 1993, Martin et 

al. 1995, Mateo et al. 2001); therefore, measuring TCO2 rather than O2 may result in 

photosynthetic rates that are dissimilar if the photosynthetic quotient is not close to unity under 

these conditions. That is, based on the higher photosynthetic rates found in this study, the change 

in CO2 per O2 would have to be much lower in seagrass communities than what was measured in 

our vials. Additionally, recycling and movement of gases within the lacunal system are not well 

understood (Mateo et al. 2001), further convoluting the comparison of instantaneous O2 

production and CO2 uptake. Measurement of TCO2 for our study, however, is appropriate given 

that carbon drawdown specifically, rather than photosynthetic rates, drives OA mitigation 

potential of seagrasses.      

 

Effects of TCO2. Increases in TCO2 enhanced the maximum photosynthetic rate for Z. 

japonica, while Z. marina’s response was inconclusive (Fig. 5). Even though statistical analysis 

found a significant difference between mean Pmax values across initial TCO2 concentrations for Z. 

marina, the level of significance was minor (F4,53 = 3.01, p = 0.0258). Across treatments, there 

was no observable increase in Z. marina Pmax and, therefore, no apparent trend of increasing Pmax 

with increasing TCO2. An effect size of 19% was determined from the one-way ANOVA 

analysis (Appendix D), meaning that only 19% of Pmax variance was attributable to initial TCO2 

concentration. The lack of enhanced photosynthesis by Z. marina in response to increasing TCO2 

is clearly contradictory to what has been previously reported for instantaneous photosynthetic 
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rates (Beer and Koch 1996, Thom 1996, Zimmerman et al. 1997); however, the manipulated 

TCO2 concentrations in those studies were, at minimum, 25% higher than our highest TCO2 

concentration. It is likely that the range of TCO2 concentrations used for this study was not large 

enough to produce a response of increased Pmax for Z. marina that could be detected given the 

high variability within our treatments. Zimmerman et al. (1997) showed that Z. marina increased 

its Pmax 225% with an exposure to TCO2 77% higher than ambient (from 2074 to 3673 µmol kg-

1). Over this range of TCO2, a linear relationship exists between Pmax and TCO2 (Beer and Koch 

1996). Using a linear equation derived from Zimmerman et al. (1997) and our mean Pmax values 

at the lowest and highest TCO2 concentrations, an 18% increase in TCO2 would induce a 55% 

increase in Z. marina Pmax. Given that the coefficient of variation (CV) ranged from 30 to 60% 

over all initial TCO2 concentrations, any response to TCO2 by Z. marina was likely obscured by 

the variance. Interestingly, however, a robust response was observed for Z. japonica, which 

increased its mean Pmax 55% over the 18% increase in TCO2, despite a CV identical to Z. marina 

(30 – 60%). Physiological and methodological factors contributing to the large variance within 

treatments may be a result of shoot to shoot variability of the photosynthetic apparatus, and the 

propagation of a diffusive boundary layer due to incremental stirring, which would increase the 

variability of the relative TCO2 conditions experienced by the leaf segment compared to the 

entire vial.   

The range of pCO2 values and corresponding TCO2 concentrations (Table 1) used for this 

study are representative of present day conditions in Padilla Bay, which exhibit large diurnal 

fluctuations in carbonate chemistry (Love et al. 2016). Based on our findings, Z. japonica will 

have a substantially greater response to TCO2 fluctuation than will Z. marina in Padilla Bay. The 

differential response of Pmax to TCO2 between species may be due to the mechanism by which 
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HCO3
- is utilized for photosynthesis. Evidence suggests that seagrass occurring in the intertidal, 

such as the Z. marina samples in our study, are adapted to more efficiently utilize HCO3
- than 

seagrass found at depth (Schwarz et al. 2000). Z. marina has been shown to take up HCO3
- as an 

inorganic carbon source via external carbonic anhydrase (CA) secretion, and is saturated with 

respect to HCO3
- at pH from 7.5 – 8.5 (Beer and Rehnberg 1996, Invers et al. 2001, Koch et al. 

2013), which, corresponds to the range of pH values in our study (Table 1). Since HCO3
- appears 

saturating at present day and future TCO2 levels for Z. marina, and any enhanced effect of CO2 

will be greater when pH is less than ~7.5, our results suggest that Z. japonica either has a lower 

pH threshold at which CO2 concentrations are high enough to elicit enhanced photosynthetic 

rates, or that HCO3
- concentrations are not saturating over the range of TCO2 concentrations used 

in this study.  

Given that there are significant variations in the ability to utilize HCO3
-, and that some 

species have a capacity to more efficiently utilize HCO3
- depending on the mechanisms exploited 

(Invers et al. 2002, Koch et al. 2013, Campbell and Fourqurean 2016) we, therefore, suggest that 

Z. japonica is less efficient than Z. marina in HCO3
- uptake. While we did not specifically 

measure the ability or mechanism of HCO3
- uptake in either species, there appears to be a higher 

threshold at which HCO3
- becomes saturating for Z. japonica, as evident by the shape of the 

response of increased Pmax to HCO3
- (Fig. 8a). The linear response of increased Pmax to HCO3

- is 

analogous to the response observed in figure 5 to TCO2. This suggests that the dominant driver 

of enhanced photosynthetic rate over the range of TCO2 tested is likely a response to HCO3
- and 

not CO2, which produces a different Pmax response curve (Fig. 8b). Evidence supports that Z. 

marina has established mechanisms to efficiently use HCO3
- (Beer and Rehnberg 1997, Invers et 

al. 2001) when CO2 concentrations are low; however, the mechanisms of HCO3
- utilization by Z. 
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japonica remain unknown. If Z. japonica is indeed able to increase its maximum photosynthetic 

rate when HCO3
- concentrations are higher, than Z. japonica may be one of the few seagrass 

species to respond positively to moderate increases in seawater TCO2, thus providing an 

increasingly more beneficial role in OA mitigation over Z. marina.  

The high energetic cost behind HCO3
- utilization is due to the active mechanisms by 

which it occurs: H+ pumping and CA secretion (Larkum 2006 and references therein, Koch et al. 

2013); therefore, an energetic constraint may be a reason as to why HCO3
- uptake may not be as 

efficient for Z. japonica. Due to its distribution predominately in the high intertidal (Shafer et al. 

2014), Z. japonica likely has to invest more energy into maintaining osmotic and thermal 

homeostasis due to the higher extremes of irradiance and salinity that occur throughout its 

distribution in the intertidal. Previous studies have found that Z. japonica invests in high 

concentrations of UV protective pigments and can tolerate chronic hypo and hyper saline 

conditions (Kaldy 2006, Shafer et al. 2011). Energy investment into these physiological 

characteristics which enable tolerance of unfavorable thermal and osmotic pressures likely result 

in a tradeoff, or lack of investment in other processes, such as active HCO3
- utilization. This does 

not, however, contradict the overall greater photosynthetic potential displayed by Z. japonica 

when TCO2 concentrations are not elevated. Rather, mechanisms other than CO2 substrate 

availability may be the reason for higher yields, such as the structure of the photosynthetic 

package, which determines the reflectance and absorbtance by the photosynthetic pigments 

(Cummings and Zimmerman 2003, Zimmerman et al. 2006).     

The differential response of Z. marina and Z. japonica to increasing TCO2 has 

implications for species’ success, performance, and expansion in a high CO2 world. Based on our 

findings, it is likely that Z. japonica will benefit more from the increasing CO2 baseline due to its 
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ability to increase HCO3
- utilization (Fig. 8a) as well as benefiting from increased CO2 uptake. 

The greater response of Z. japonica to TCO2 will lead to an increase in growth rate for above and 

below ground biomass. The increase in growth, however, does not necessarily translate to an 

increased competition effect with Z. marina. Evidence suggests that Z. japonica distribution 

offshore (i.e., an encroaching presence into Z. marina’s upper distribution) is limited by 

temperature, and that the morphological difference between the two species results in a 

competitive dominance of Z. marina over Z. japonica due to its broader leaves and canopy 

height, which shade Z. japonica (Harrison 1982b , Kaldy et al 2015). While Z. japonica presence 

offshore is less likely due to thermal tolerance and competition with Z. marina, its continued 

colonization of unvegetated habitat higher in the intertidal may increase if growth is enhanced at 

higher TCO2. The expansion into unvegetated habitat could provide additional ecological 

benefits for species (Shafer et al. 2014), as well as a spatial expanse of seagrass induced 

modification of carbonate chemistry throughout the intertidal zone.          
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  a.              

 

Figure 8. Mean maximum photosynthetic rate (Pmax) of Z. marina (open circles) and Z. 
japonica (closed squares) as a function of HCO3

- (a) and CO2 (b). Error bars are SD. 
Discrete HCO3

- and CO2 concentrations are the initial values for each treatment 
corresponding to pCO2 and TCO2 values (Table 1). Teal dashed lines are the linear fit 
applied to Z. marina’s response to HCO3

- and CO2. Blue dashed lines are the linear (a) 
and non-linear (2nd order polynomial) (b) best fit of Z. japonica’s Pmax to HCO3

- and CO2. 
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 Predicting OA mitigation potential. Measuring instantaneous photosynthetic rates of Z. 

marina and Z. japonica as a change in TCO2, and assuming alkalinity constant, provides a 

constraint on the carbonate system; thereby providing a means to predict how the photosynthetic 

potential of each species will affect the carbonate chemistry of the surrounding water. Light 

sensor data from the field and initial TCO2 concentrations were used to parameterize the two-

parameter irradiance-TCO2 model (Fig. 3), and predict how photosynthetic rate changes by the 

hour for Z. marina and Z. japonica in Padilla Bay (Fig. 6). Additionally, estimates of the 

corresponding change in pH and aragonite saturation state were calculated based on the 

photosynthetic rate of each species (Fig. 7). Importantly, the induced changes on the carbonate 

system are approximate values and correspond to seawater directly adjacent to a 

photosynthesizing leaf segment on a microscale level. Nevertheless, this gives better insight as to 

the potential change in the carbonate system made possible by Z. marina and Z. japonica. Our 

results indicate that Z. japonica displays a 3-fold higher photosynthetic potential and, therefore, 

has a stronger affect on the carbonate system on a per chlorophyll basis. Importantly, the 

estimated changes in pH and Ωar are only representative at given temperature and salinity (Fig 7).  

To integrate our findings into a more applicable context of OA-mitigation, the specific 

changes induced on the carbonate system by both species’ maximum photosynthetic potential 

were extrapolated to different volumes of water corresponding to various depths over a 1 m2 

patch of seagrass with a biomass of 100 gDW m-2. Biomass estimates from Padilla Bay were 

approximated from Bulthuis (2013), where gDW m-2 ranges from ca. 60 – 200 for both species. 

Assuming a well-mixed water column, average mg chl gDW-1 (Cb) as measured for each species 

and projected Pmax values (r) were used to calculate a change in TCO2 as: 

(4)  Δ𝑇𝐶𝑂! =   𝑇𝐶𝑂!!    𝐶! ∗
!!
!
∗ !

!
∗ 𝑓 ∗ 𝑟   
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where TCO2i is the initial TCO2 concentration, Cb is mg chl gDW-1, bi is the gDW m-2, d is depth 

(m), and f is the unit conversion m3 1000 L-1 (summarized, Table 5). Changes in TCO2 were then 

used to determine changes in carbonate chemistry parameters. It is important to note that the 

chlorophyll to biomass ratio for our experiment was considerably lower than what has been 

previously reported (Shafer and Kaldy 2014), and inefficiencies in our chlorophyll extraction 

could overestimate the predicted changes. Despite the differences in our chlorophyll to biomass 

measurements, the general trend and relative difference between Z. marina and Z. japonica 

photosynthesis on carbonate chemistry is clear. Specifically, the change in pH, aragonite 

saturation state, and the substrate-to-inhibitor ratio ([HCO3
-]/[H+], all of which have been shown 

to affect calcification and acid-base regulation of organisms sensitive to acidification (Pörtner 

2008, Kroeker et al. 2013, Waldbussser et al. 2015a, b Thomsen et al. 2015, Fassbender et al. 

2016) were approximated (Fig. 9). Theses changes, however, are specific to the timescale of 

TCO2 uptake via photosynthesis, and will shift with changes in photosynthetic activity and 

respiration on an hourly scale. While our findings are based on Z. marina and Z. japonica 

populations in the lower intertidal of Padilla Bay, extrapolation of the induced changes on the 

carbonate system by species-specific photosynthesis may be applicable to other locales with 

similar physical conditions and ecological structure. Importantly, the distribution of both species 

needs to be taken into account when determining the total effect each species has on carbonate 

chemistry. For example, our findings suggest that Z. japonica has a stronger affect on carbonate 

chemistry than Z. marina; however, the 3:1 greater hectare coverage of Z. marina in Padilla Bay 

(Table 5) results in a larger-scale affect by Z. marina than Z. japonica. In addition, our findings 

could be applied and referenced when determining aquaculture techniques aimed at improving 
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carbonate chemistry conditions in more controlled environments, which is an initiative of the 

shellfish industry in Washington state (Blue ribbon panel on ocean acidification 2012).  
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Table 5. Analytical and predicted parameters mg chl gDW-1, ΔTCO2, and Pmax for Z. marina and 
Z. japonica. Parameters were used in conjunction with approximated biomass m-2 to calculate 
changes in the carbonate system (Fig. 9). *Reported from Padilla Bay (PB) in Bulthuis (2013). 

 

Species 

Mean initial 
TCO2 

 

Mean 
chl:biomass ratio 

 

Predicted  
Pmax 

 

Est. 
biomass* 

(gDW m-2) 

Coverage 
species-1 in PB* 

(ha) 

Z. marina 1964 1.88 ± 0.89      115     100        3046 

      Z. japonica 1770 0.67 ± 0.33      193     100         836 

 
1964 0.67 ± 0.33      379     100           • 

 
2051 0.67 ± 0.33      490     100           • 

Units: TCO2 = umol kg-1; Pmax = µmol TCO2 mg chl-1 hr-1; chl:biomass = mg chl gDW-1. 
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Figure 9. Blue lines are the predicted change in pH, aragonite saturation state, and substrate-to-
inhibitor (mol µmol-1) ratio based on the predicted Pmax (µmol TCO2 mg chl-1 hr-1) of Z. marina 
(open circles) and Z. japonica (closed squares) with an initial TCO2 concentration of 1964 µmol 
kg-1. Red and yellow lines are the upper and lower bound of the predicted change in pH, 
aragonite saturation state, and substrate–to-inhibitor ratio of the high and low pCO2 treatment of 
Z. japonica at initial TCO2 concentrations of 2051 and 1770 µmol kg-1, respectively. Predicted 
change is over a 1 m2 area and given depth assuming a biomass of 100 gDW m-2 (Table 5, Eq. 
4). Initial TCO2 concentrations correspond to pCO2 treatments at specific experimental 
conditions of TA (TA was averaged for 400 pCO2 treatment), temperature, and salinity (Table 
1).  
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 Dynamics of seagrass beds. Recent studies have highlighted the extreme spatial and 

temporal variability that exists when attempting to determine potential mitigating effects 

macrophytes may have on unfavorable carbonate chemistry (Hendriks et al. 2014, 2015, Krause-

Jensen et al. 2015, Challener et al. 2016). In addition to seagrass productivity and respiration, 

heterotrophic respiration, tidal exchange, and riverine input further modify carbonate chemistry 

on various spatial and temporal scales. Because organisms vulnerable to OA are more sensitive 

at particular life-stages, the temporal variability of carbonate chemistry becomes critical in 

determining organismal resilience to OA (Kurihara 2008, Hettinger et al. 2012, Barton et al. 

2012, Waldbusser et al. 2015b). Importantly, the spatial heterogeneity of carbonate chemistry 

within seagrass beds is equally important. Variations in chlorophyll content along the leaf and 

amongst shoots will result in differential photosynthetic rates within the seagrass canopy, thereby 

creating disparate water parcels with respect to TCO2 on various spatial scales. In addition, the 

density of seagrass will result in different mixing rates and flow regimes that will further modify 

carbonate chemistry in time and space (Peterson et al. 2005, Koch et al. 2006, Marbà et al. 2006, 

Hendriks et al. 2014). The flow of water, TCO2 concentration, and light, interact in a way that, 

together, determine carbon assimilation and uptake (McPherson et al. 2015), which directly 

affects the scale of seagrass OA mitigation. It is evident, then that spatial microzones of 

differential carbonate chemistry exist within the canopy of a seagrass bed. Interestingly, 

vulnerable calcifying organisms may exploit these microzones of refuge, as carbonate chemistry 

chemical cues have been shown to drive substrate selectivity for bivalves transitioning to the 

benthos (Green et al. 2013, Clements et al. 2016). This suggests that the importance of spatial 

carbonate chemistry heterogeneity is critical when predicting seagrass OA mitigation potential.  
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 A multitude of other biological factors also determine the variability of carbonate 

chemistry within seagrass beds. Epiphytes growing on seagrass leaves can account for over 50% 

of the primary production in some seagrass meadows, however, the dominance of epiphytic 

photosynthesis over seagrass varies depending on the season (Thom 1990, Wear et al. 1999, 

Borowitzka et al. 2006). Epiphytic growth can vary dramatically depending on the morphology 

of seagrass—that is, small changes in morphology can lead to large changes in epiphytic 

assemblages (Borowitzka et al. 2006). The large percent of primary production by epiphytes is 

likely a dual component of reduced photosynthesis by seagrass leaves from epiphytic shading, 

and surface area abundance of algae epiphytic growth. Since our experiment did not include 

epiphytic photosynthesis as they were removed from our samples, it is necessary to understand 

and consider the contribution to, and role of, epiphyte primary production on carbonate 

chemistry when examining seagrass OA mitigation potential.  

 The variability in carbonate chemistry driven by biological cycling of CO2 in seagrass 

beds is not just a result of shoot and epiphytic autotrophy, but by the significant contributions of 

carbon fixation via the microphytobenthos (Kaldy et al. 2002) and elevated rates of heterotrophic 

respiration fueled by high concentrations of organic matter retained within the canopy (Barrón et 

al. 2006 and references therein). In addition, seagrasses excrete small quantities of DOM into the 

water column and sediments stimulating heterotrophy, which in turn reduces net community 

production (Benner et a. 1986). Roots and rhizomes diffuse oxygen into the sediments, creating 

rich oxic layers that are exploited by benthic heterotrophs; the increased benthic respiration not 

only produces a positive flux of CO2 out of the sediment, but also generates corrosive waters that 

actively dissolve the carbonate rich sediments associated with seagrasses (Marbà et al. 2006, 

Mazarrasa et al. 2015). Dissolution of carbonate sediments has a direct affect on the carbonate 
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system—that is, higher carbonate availability from CaCO3 dissolution increases the buffering 

capacity of the system. Together, the myriad biological processes add substantial heterogeneity 

to the carbonate system within seagrass beds and, although, recent studies have quantified the 

ecosystem effect on the carbonate system as a whole (Manzello et al. 2012, Hendriks et al. 

2014), the complexity of the system can hinder extrapolation to other seagrass systems in time 

and space.  

   

Conclusions. A comparison of the photosynthetic potential between Z. marina and Z. 

japonica has implications for elucidating the contribution each species has on the carbonate 

system. In the higher intertidal zone where species overlap occurs, our results indicate that Z. 

japonica has a 3-fold greater photosynthetic potential than Z. marina when normalized to 

chlorophyll (Fig. 4). By measuring photosynthetic potential as a change in TCO2, our findings 

could be extrapolated to estimate the predicted change in TCO2 given measured mg chl gDW-1 

and reported biomass m-2 in Padilla Bay (Bulthuis 2013) (Table 5, Fig. 9). Z. japonica appears to 

be better suited to mitigate OA on a per chlorophyll basis, given its higher photosynthetic rate 

and efficiency (Fig. 7 and 9). However, due to the 3:1 greater area covered by Z. marina over Z. 

japonica in Padilla Bay, Z. marina would have a 2.5x greater effect on carbonate chemistry when 

accounting for species total abundance. Additionally, our results indicate that Z. japonica stands 

to benefit more from moderate increases in TCO2 by up regulating its photosynthetic potential 

(Fig. 5). The greater response of Z. japonica to TCO2 may be a result of not only increased CO2, 

but also increased HCO3
- concentrations, whereas Z. marina appears to be saturated with respect 

to HCO3
-  (Fig 8a) (Invers et al. 2001). Due to the high variability within our treatments, any 

positive response to moderate increases in TCO2 by Z. marina was likely obscured (Fig. 5, 8).  
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 While a broader perspective of carbonate chemistry heterogeneity in time and space in 

situ will be needed when assessing potential seagrass OA mitigation, the photosynthetic potential 

of individual species with respect to not only irradiance and TCO2, but temperature, salinity, and 

other environmental variables will need to be considered. This will become necessary when 

deciphering the favorable contributions each autotrophic group has on the carbonate system; 

particularly when two co-occurring seagrasses are in one specific region. Our results suggest that 

Z. japonica may increase its relative contribution to OA mitigation as TCO2 rises in the coastal 

ocean. In addition, our study illuminates the potential of PNW populations of Z. marina and Z. 

japonica to modify the carbonate system, and provides a direct comparison of photosynthetic 

potential when exposed to varying levels of TCO2. This is an initial step in attempting to 

determine the OA mitigation potential of seagrass systems in the PNW where a better 

understanding is needed (Blue ribbon panel on OA 2012). Further, our results could be integrated 

into larger scale biogeochemical models and observation networks aimed at deducing the 

individual contribution of seagrasses on reducing TCO2, and the potential for creating areas of 

favorable carbonate chemistry (Khangaonkar et al. 2013, Alin et al. 2015).  
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Appendix 

A. Predicted photosynthetic parameters from hyperbolic tangent model (eq. 1) where Pmax is the 
maximum photosynthetic rate, α is the photosynthetic efficiency, and Rd is the respiration rate 
normalized to gDW. Errors are 95% CI for individual parameters, and the root mean square error 
(RMSE) of the model fit. Trt. is the target PCO2 treatment: 1, 2, 3, 4, 5 = 100, 250, 400, 800, and 
1200 µatm, respectively.   
 

Species Target pCO2. Pmax α Rd n RMSE 

Z. marina 100 187 ± 54 0.961 ± 0.69 21.8 ± 41 20 44.8 

 
250 236 ± 220 0.490 ± 0.85 20.7 ± 49 19 57.9 

 
400 214 ± 57 2.45 ± 1.9 −20.5 ± 49 20 48.9 

 
800 222 ± 74 1.16 ± 0.92 7.56 ± 49 20 57.3 

  1200 220 ± 83 2.34 ± 2.3 −12.9 ± 94 20 72.1 
Z. japonica 100 230 ± 67 2.00 ± 1.4 −28.6 ± 55 20 74.2 

 
250 292 ± 97 1.03 ± 0.85 −23.4 ± 55 17 143 

 
400 307 ± 156 1.47 ± 1.8 15.7 ± 101 18 152 

 
800 205 ± 118 6.79 ± 9.2 9.09 ± 101 19 216 

  1200 319 ± 267 0.654 ± 1.0 38.9 ± 72 19 123 
 
Units: Pmax and Rd = µmol TCO2 mg-1 chl h-1; α = µmol TCO2 mg-1 chl h-1 (µmol photons m-2 s-1)-1 
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B. Summary of ANOVA results on respiration rates for Z. marina and Z. japonica across all 
pCO2 treatments.   
 

Source Sum Sq. d.f. Mean sq. F Prob>F 

Species 3939 1 3939 1.2 0.2814 

pCO2 25165 4 6291 1.92 0.1331 

Spec*pCO2 25958 4 6489 1.98 0.1233 
Error 94833 29 3270 � � 
Total 154168 38 � � � 
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C. Respiration rates for Z. marina (open circles) and Z. japonica (closed squares) across all pCO2 
treatments. 
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D. ANOVA table from one-way analysis examining Pmax values with main effect TCO2. 
 

Source d.f. Sum Sq Mean Sq. F-stat. p-value 

TCO2 4 27094 6774 3.01 0.0258 

Error 53 119078 2247 � � 

Total 57 146173 � � � 
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