1,070 research outputs found
Comparison of four mathematical models to analyze indicator-dilution curves in the coronary circulation
While several models have proven to result in accurate estimations when measuring cardiac output using indicator dilution, the mono-exponential model has primarily been chosen for deriving coronary blood/plasma volume. In this study, we compared four models to derive coronary plasma volume using indicator dilution; the mono-exponential, power-law, gamma-variate, and local density random walk (LDRW) model. In anesthetized goats (N = 14), we determined the distribution volume of high molecular weight (2,000 kDa) dextrans. A bolus injection (1.0 ml, 0.65 mg/ml) was given intracoronary and coronary venous blood samples were taken every 0.5–1.0 s; outflow curves were analyzed using the four aforementioned models. Measurements were done at baseline and during adenosine infusion. Absolute coronary plasma volume estimates varied by ~25% between models, while the relative volume increase during adenosine infusion was similar for all models. The gamma-variate, LDRW, and mono-exponential model resulted in volumes corresponding with literature, whereas the power-model seemed to overestimate the coronary plasma volume. The gamma-variate and LDRW model appear to be suitable alternative models to the mono-exponential model to analyze coronary indicator-dilution curves, particularly since these models are minimally influenced by outliers and do not depend on data of the descending slope of the curve only
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV
Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected
by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the
form of an enhancement of pairs of like-sign charged pions with small four-momentum
difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source
is investigated, determining both the correlation radius and the chaoticity parameter. The
measured correlation radius is found to increase as a function of increasing charged-particle
multiplicity, while the chaoticity parameter is seen to decreas
Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV
The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported
Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction
Updated Determination of D⁰–D¯⁰Mixing and CP Violation Parameters with D⁰→K⁺π⁻ Decays
We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D⁰→K⁺π⁻ to D⁰→K⁻π⁺ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0 fb⁻¹ recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be x′²=(3.9±2.7)×10⁻⁵, y′=(5.28±0.52)×10⁻³, and R[subscript D]=(3.454±0.031)×10⁻³. Without this assumption, the measurement is performed separately for D⁰ and D[over ¯]⁰ mesons, yielding a direct CP-violating asymmetry A[subscript D]=(-0.1±9.1)×10⁻³, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results include statistical and systematic uncertainties and improve significantly upon previous single-measurement determinations. No evidence for CP violation in charm mixing is observed
Observation of D⁰ Meson Decays to Π⁺π⁻μ⁺μ⁻ and K⁺K⁻μ⁺μ⁻ Final States
The first observation of the D⁰→π⁺π⁻μ⁺μ⁻ and D⁰→K⁺K⁻μ⁺μ⁻ decays is reported using a sample of proton-proton collisions collected by LHCb at a center-of-mass energy of 8 TeV, and corresponding to 2 fb⁻¹ of integrated luminosity. The corresponding branching fractions are measured using as normalization the decay D⁰→K⁻π⁺[μ⁺μ⁻][subscript ρ⁰/ω], where the two muons are consistent with coming from the decay of a ρ⁰ or ω meson. The results are B(D⁰→π⁺π⁻μ⁺μ⁻)=(9.64±0.48±0.51±0.97)×10⁻⁷ and B(D⁰→K⁺K⁻μ⁺μ⁻)=(1.54±0.27±0.09±0.16)×10⁻⁷, where the uncertainties are statistical, systematic, and due to the limited knowledge of the normalization branching fraction. The dependence of the branching fraction on the dimuon mass is also investigated
Measurement of CP observables in B± → D(⁎)K± and B± → D(⁎)π± decays
Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and D¯ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and Dγ final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date
Observation of CP Violation in Charm Decays
A search for charge-parity (CP) violation in D-0 -> K-K+ and D-0 -> pi(-)pi(+) decays is reported, using pp collision data corresponding to an integrated luminosity of 5.9 fb(-1) collected at a center-of-mass energy of 13 TeV with the LHCb detector. The flavor of the charm meson is inferred from the charge of the pion in D* (2010)(+) -> D-0 pi(+) decays or from the charge of the muon in (B) over bar -> D-0 mu(-)(nu) over bar X-mu decays. The difference between the CP asymmetries in D-0 -> K-K+ and D-0 -> pi(-)pi(+) decays is measured to be Delta A(CP) = [-18.2 +/- 3.2(stat) +/- 0.9(syst)] x 10(-4) for pi-tagged and Delta A(CP) = [-9 +/- 8(stat) +/- 5(syst)] x 10(-4) for mu-tagged D-0 mesons. Combining these with previous LHCb results leads to Delta A(CP) = (-15.4 +/- 2.9) x 10(-4), where the uncertainty includes both statistical and systematic contributions. The measured value differs from zero by more than 5 standard deviations. This is the first observation of CP violation in the decay of charm hadrons
- …