1,213 research outputs found

    Generic Radar Processing Methods for Monitoring Tasks on Bridge Infrastructure

    Get PDF
    Kritische Verkehrsinfrastrukturen, wie z. B. Brücken, können nur dann sicher betrieben werden, wenn ihr Zustand regelmäßig bewertet wird. Neben visuellen Inspektionen umfasst die Bewertung auch Messungen des Brückenverhaltens auf statische oder dynamische Lasten. Diese Messungen werden in der Regel mit einer Vielzahl von Sensoren durchgeführt, die direkt an der Brücke befestigt sind. Zunehmend werden jedoch auch Fernerkundungssensoren eingesetzt, wie z.B. das bodenbasierte interferometrische Radar (engl.: ground-based interferometric radar - GBR). GBR können aus der Ferne Verschiebungen mit einer Genauigkeit im Submillimeterbereich messen, indem sie eine elektromagnetische Welle aussenden, die von Strukturen an der Unterseite der Brücke reflektiert wird. Im Vergleich zu direkt befestigten Sensoren wird die Installationszeit verkürzt und der normale Betrieb der Brücke wird nicht beeinträchtigt. Vergleichbare Messunsicherheiten lassen sich jedoch nur erreichen, wenn bei der Prozessierung der Messungen bestimmte Herausforderungen berücksichtigt werden. Dabei geht es vor allem um die Entfernung externer Einflüsse wie Störungen des Signals oder Veränderungen atmosphärischer Parameter. Die Messungen werden außerdem durch statischen Clutter und Projektionsfehler beeinflusst, die zu systematischen Abweichungen führen. Statischer Clutter wird mit einer angepassten Kreisschätzung bestimmt, während Projektionsfehler durch die Verwendung mehrerer Sensoren zur Schätzung separater Verschiebungskomponenten vermindert werden. Mit diesen zusätzlichen Prozessierungsschritten erreicht GBR eine ähnliche Unsicherheit wie andere Fernerkundungssensoren, was durch Vergleiche mit Referenzsensoren validiert wird. Verbleibende Unterschiede zu diesen Referenzsensoren lassen sich durch Unsicherheiten bei der Schätzung von Clutter und durch die begrenzte Auflösung einzelner Reflexionen erklären. Die resultierenden Verschiebungsmessungen werden dann zur Schätzung schadensempfindlicher Merkmale wie Eigenfrequenzen und Eigenformen verwendet. Eigenfrequenzen werden bestimmt, indem ein Modell einer gedämpften Sinuskurve für die Schwingung nach einer Fahrzeugüberfahrt geschätzt wird. Mit diesem Ansatz wird jede Fahrzeugüberfahrt separat analysiert, was eine Unterscheidung zwischen verschiedenen Fahrzeugmassen ermöglicht. Außerdem erlaubt die große Anzahl von Frequenzschätzungen eine zuverlässigere Bestimmung des Temperatureinflusses auf die Eigenfrequenzen. Für die Bestimmung der Eigenformen wird ein alternativer Messaufbau erarbeitet. Dieser Aufbau nutzt die flache Unterseite einer Brücke, um das ausgesendete Signal auf einen Reflektor auf dem Boden zu spiegeln. Eine permanente Installation von Reflektoren an der Brückenunterseite ist daher nicht erforderlich, wodurch die Anwendung von GBR auf eine große Anzahl von Brücken erweitert wird. Darüber hinaus kann die Messung nicht durch andere Verschiebungskomponenten beeinflusst werden, was das Auftreten von systematischen Abweichungen verringert. Folglich sind die Eigenformen empfindlicher gegenüber Schäden, da die Unsicherheiten reduziert werden. Das zugrunde liegende Prinzip dieses alternativen Messaufbaus wird wiederum durch Vergleiche mit Referenzsensoren validiert

    Spatial and seasonal patterns of FMD primary outbreaks in cattle in Zimbabwe between 1931 and 2016

    Get PDF
    Foot and mouth disease (FMD) is an important livestock disease impacting mainly intensive production systems. In southern Africa, the FMD virus is maintained in wildlife and its control is therefore complicated. However, FMD control is an important task to allow countries access to lucrative foreign meat market and veterinary services implement drastic control measures on livestock populations living in the periphery of protected areas, negatively impacting local small-scale livestock producers. This study investigated FMD primary outbreak data in Zimbabwe from 1931 to 2016 to describe the spatio-temporal distribution of FMD outbreaks and their potential drivers. The results suggest that: (i) FMD outbreaks were not randomly distributed in space across Zimbabwe but are clustered in the Southeast Lowveld (SEL); (ii) the proximity of protected areas with African buffalos was potentially responsible for primary FMD outbreaks in cattle; (iii) rainfall per se was not associated with FMD outbreaks, but seasons impacted the temporal occurrence of FMD outbreaks across regions; (iv) the frequency of FMD outbreaks increased during periods of major socio-economic and political crisis. The differences between the spatial clusters and other areas in Zimbabwe presenting similar buffalo/cattle interfaces but with fewer FMD outbreaks can be interpreted in light of the recent better understanding of wildlife/livestock interactions in these areas. The types of wildlife/livestock interfaces are hypothesized to be the key drivers of contacts between wildlife and livestock, triggering a risk of FMD inter-species spillover. The management of wildlife/livestock interfaces is therefore crucial for the control of FMD in southern Africa

    Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

    Full text link
    Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators

    Novel Insights into the Bovine Polled Phenotype and Horn Ontogenesis in Bovidae

    Get PDF
    Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae

    The tyranny of the male preserve

    Get PDF
    Within this paper I draw on short vignettes and quotes taken from a two-year ethnographic study of boxing to think through the continuing academic merit of the notion of the male preserve. This is an important task due to evidence of shifts in social patterns of gender that have developed since the idea was first proposed in the 1970s. In aligning theoretical contributions from Lefebvre and Butler to discussions of the male preserve, we are able to add nuance to our understanding of how such social spaces are engrained with and produced by the lingering grasp of patriarchal narratives. In particular, by situating the male preserve within shifting social processes, whereby certain men’s power is increasingly undermined, I highlight the production of space within which narratives connecting men to violence, aggression and physical power can be consumed, performed and reified in a relatively unrestricted form. This specific case study contributes to gender theory as an illustration of a way in which we might explore and understand social enclaves where certain people are able to lay claim to space and power. As such, I argue that the notion of the male preserve is still a useful conceptual, theoretical and political device especially when considered as produced by the tyranny of gender power through the dramatic representation and reification of behaviours symbolically linked to patriarchal narrations of manhood

    HIV-1 V3 envelope deep sequencing for clinical plasma specimens failing in phenotypic tropism assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 infected patients for whom standard gp160 phenotypic tropism testing failed are currently excluded from co-receptor antagonist treatment. To provide patients with maximal treatment options, massively parallel sequencing of the envelope V3 domain, in combination with tropism prediction tools, was evaluated as an alternative tropism determination strategy. Plasma samples from twelve HIV-1 infected individuals with failing phenotyping results were available. The samples were submitted to massive parallel sequencing and to confirmatory recombinant phenotyping using a fraction of the gp120 domain.</p> <p>Results</p> <p>A cut-off for sequence reads interpretation of 5 to10 times the sequencing error rate (0.2%) was implemented. On average, each sample contained 7 different V3 haplotypes. V3 haplotypes were submitted to tropism prediction algorithms, and 4/14 samples returned with presence of a dual/mixed (D/M) tropic virus, respectively at 3%, 10%, 11%, and 95% of the viral quasispecies. V3 tropism prediction was confirmed by gp120 phenotyping, except for two out of 4 D/M predicted viruses (with 3 and 95%) which were phenotypically R5-tropic. In the first case, the result was discordant due to the limit of detection for the phenotyping technology, while in the latter case the prediction algorithms were not computing the viral tropism correctly.</p> <p>Conclusions</p> <p>Although only demonstrated on a limited set of samples, the potential of the combined use of "deep sequencing + prediction algorithms" in cases where routine gp160 phenotype testing cannot be employed was illustrated. While good concordance was observed between gp120 phenotyping and prediction of R5-tropic virus, the results suggest that accurate prediction of X4-tropic virus would require further algorithm development.</p

    GERMLINE GAIN-OF-FUNCTION MUTATIONS of ALK DISRUPT CENTRAL NERVOUS SYSTEM DEVELOPMENT

    Get PDF
    International audienceNeuroblastoma (NB) is a frequent embryonal tumour of sympathetic ganglia and adrenals with extremely variable outcome. Recently, somatic amplification and gain-of-function mutations of the anaplastic lymphoma receptor tyrosine kinase (ALK, MIM 105590) gene, either somatic or germline, were identified in a significant proportion of NB cases. Here we report a novel syndromic presentation associating congenital NB with severe encephalopathy and abnormal shape of the brainstem on brain MRI in two unrelated sporadic cases harbouring de novo, germline, heterozygous ALK gene mutations. Both mutations are gain-of-function mutations that have been reported in NB and NB cell lines. These observations further illustrate the role of oncogenes in both tumour predisposition and normal development, and shed light on the pleiotropic and activity-dependent role of ALK in humans. More generally, missing germline mutations relative to the spectrum of somatic mutations reported for a given oncogene may be a reflection of severe effects during embryonic development, and may prompt mutation screening in patients with extreme phenotypes

    Multicore liquid perfluorocarbon-loaded multimodal nanoparticles for stable ultrasound and <sup>19</sup> F MRI applied to in vivo cell tracking

    Get PDF
    Ultrasound is the most commonly used clinical imaging modality. However, in applications requiring cell-labeling, the large size and short active lifetime of ultrasound contrast agents limit their longitudinal use. Here, 100 nm radius, clinically applicable, polymeric nanoparticles containing a liquid perfluorocarbon, which enhance ultrasound contrast during repeated ultrasound imaging over the course of at least 48 h, are described. The perfluorocarbon enables monitoring the nanoparticles with quantitative 19 F magnetic resonance imaging, making these particles effective multimodal imaging agents. Unlike typical core–shell perfluorocarbon-based ultrasound contrast agents, these nanoparticles have an atypical fractal internal structure. The nonvaporizing highly hydrophobic perfluorocarbon forms multiple cores within the polymeric matrix and is, surprisingly, hydrated with water, as determined from small-angle neutron scattering and nuclear magnetic resonance spectroscopy. Finally, the nanoparticles are used to image therapeutic dendritic cells with ultrasound in vivo, as well as with 19 F MRI and fluorescence imaging, demonstrating their potential for long-term in vivo multimodal imaging. </p

    A Holistic Approach to Marine Eco-Systems Biology

    Get PDF
    With biology becoming quantitative, systems-level studies can now be performed at spatial scales ranging from molecules to ecosystems. Biological data generated consistently across scales can be integrated with physico-chemical contextual data for a truly holistic approach, with a profound impact on our understanding of life [1]–[5]. Marine ecosystems are crucial in the regulation of Earth's biogeochemical cycles and climate [6],[7]. Yet their organization, evolution, and dynamics remain poorly understood [8],[9]. The Tara Oceans project was launched in September 2009 for a 3-year study of the global ocean ecosystem aboard the ship Tara. A unique sampling programme encompassing optical and genomic methods to describe viruses, bacteria, archaea, protists, and metazoans in their physico-chemical environment has been implemented. Starting as a grassroots initiative of a few scientists, the project has grown into a global consortium of over 100 specialists from diverse disciplines, including oceanography, microbial ecology, genomics, molecular, cellular, and systems biology, taxonomy, bioinformatics, data management, and ecosystem modeling. This multidisciplinary community aims to generate systematic, open access datasets usable for probing the morphological and molecular makeup, diversity, evolution, ecology, and global impacts of plankton on the Earth system
    corecore