23 research outputs found

    Robot-assisted kidney transplantation with regional hypothermia using grafts with Multiple Vessels After Extracorporeal Vascular Reconstruction: results from the European Association of Urology Robotic Urology Section Working Group

    No full text
    Background: Kidney transplantation using grafts with multiple vessels (GMVs) is technically demanding and may be associated with increased risk of complications or suboptimal graft function. To date, no studies have reported on robot-assisted kidney transplantation (RAKT) using GMVs. Objective: To report our experience with RAKT using GMVs from living donors, focusing on technical feasibility and early postoperative outcomes. Design, setting, and participants: We reviewed the multi-institutional, prospectively collected European Association of Urology (EAU) Robotic Urology Section (ERUS)-RAKT database to select consecutive patients undergoing RAKT from living donors using GMVs between July 2015 and January 2018. Patients undergoing RAKT using grafts with single vessels (GSVs) served as controls. In case of GMVs, ex vivo vascular reconstruction techniques were performed during bench surgery according to the case-specific anatomy. Intervention: RAKT with regional hypothermia. Outcome measurements and statistical analysis: Intraoperative outcomes and early (30 d) postoperative complications and functional results were the main study endpoints. Multivariable logistic regression analysis evaluated potential predictors of suboptimal renal function at 1 mo. Results and limitations: Overall, 148 RAKTs were performed during the study period. Of these, 21/148 (14.2%) used GMVs; in all cases, single arterial and venous anastomoses could be performed after vascular reconstruction. Median anastomoses and rewarming times did not differ significantly between the GMV and GSV groups. Total and cold ischemia times were significantly higher in the GMV cohort (112 vs 88 min, p = 0.004 and 50 vs 34 min, p = 0.003, respectively). Overall complication rate and early functional outcomes were similar among the two groups. No major intra-or postoperative complications were recorded in the GMV cohort. At multivariable analysis, use of GMVs was not significantly associated with suboptimal renal function at 1 mo. Small sample size and short follow-up represent the main study limitations. Conclusions: RAKT using GMVs from living donors is technically feasible and achieved favorable perioperative and short-term functional outcomes. Larger studies with longer follow-up are needed to confirm our findings. Patient summary: In this study, we evaluated for the first time in literature the results of RAKT from living donors using kidneys with multiple arteries and veins. We found that, in experienced centers, RAKT using kidneys with multiple vessels is feasible and achieves optimal results in terms of postoperative kidney function with a low number of postoperative complications. (C) 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved

    Robot-assisted Kidney Transplantation: The European Experience.

    Get PDF
    BACKGROUND: Robot-assisted kidney transplantation (RAKT) has recently been introduced to reduce the morbidity of open kidney transplantation (KT). OBJECTIVE: To evaluate perioperative and early postoperative RAKT outcomes. DESIGN, SETTING AND PARTICIPANTS: This was a multicenter prospective observational study of 120 patients who underwent RAKT, predominantly with a living donor kidney, in eight European institutions between July 2015 and May 2017, with minimum follow-up of 1 mo. The robot-assisted surgical steps were transperitoneal dissection of the external iliac vessels, venous/arterial anastomosis, graft retroperitonealization, and ureterovesical anastomosis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Descriptive analysis of surgical data and their correlations with functional outcomes. RESULTS AND LIMITATIONS: The median operative and vascular suture time was 250 and 38min, respectively. The median estimated blood loss was 150ml. No major intraoperative complications occurred, although two patients needed open conversion. The median postoperative estimated glomerular filtration rate was 21.2, 45.0, 52.6, and 58.0ml/min on postoperative day 1, 3, 7, and 30, respectively. Both early and late graft function were not related to overall operating time or rewarming time. Five cases of delayed graft function (4.2%) were reported. One case (0.8%) of wound infection, three cases (2.5%) of ileus, and four cases of bleeding (3.3%; three of which required blood transfusion), managed conservatively, were observed. One case (0.8%) of deep venous thrombosis, one case (0.8%) of lymphocele, and three cases (2.5%) of transplantectomy due to massive arterial thrombosis were recorded. In five cases (4.2%), surgical exploration was performed for intraperitoneal hematoma. Limitations of the study include selection bias, the lack of an open control group, and failure to report on patient cosmetic satisfaction. CONCLUSIONS: When performed by surgeons with robotic and KT experience, RAKT is safe and reproducible in selected cases and yields excellent graft function. PATIENT SUMMARY: We present the largest reported series on robot-assisted kidney transplantation. Use of a robotic technique can yield low complication rates, rapid recovery, and excellent graft function. Further investigations need to confirm our promising data

    Robot-assisted kidney transplantation (RAKT) from living donors using right- versus left-sided grafts: Results from the EAU Robotic Urology Section (ERUS)-RAKT working group

    Get PDF
    Introduction & Objectives: RAKT from living donors (LD) is increasingly performed in selected centers with experience in robotic surgery and kidney transplantation (KT). Of note, KT from LD using right-sided graft (RSG) is challenging due to the brevity of the right renal vein and has been associated with a higher risk of perioperative complications in selected series. In this scenario, RAKT may facilitate the performance of vascular anastomoses in case of short renal vessels thanks to the advantages of the robotic platform. However, the evidence on the safety and feasibility of RAKT using RSGs is lacking. The aim of this study is to compare the surgical and early perioperative outcomes after RAKT from LD using right- vs. left-sided grafts in a large prospective multicenter cohort (ERUS-RAKT working group)

    Robotic kidney transplantation using right-versus left-sided grafts from living donors: an european multicentre experience (ERUS-RAKT working group)

    Get PDF
    Introduction: RAKT from living donors (LD) is increasingly performedin selected centers with experience in robotic surgery and kidneytransplantation (KT). Of note, KT from LD using right-sided graft (RSG)is challenging due to the brevity of the right renal vein and has beenassociated with a higher riskof perioperative complications in selectedseries. In this scenario, RAKT may facilitate the performance ofvascular anastomoses in case of short renal vessels thanks to theadvantages of the robotic platform. However, the evidence on thesafety and feasibility of RAKT using RSGs is lacking. The aim of thisstudy is to compare the surgical andearly perioperative outcomes after RAKT from LD using right- vs. left-sided grafts in a large prospectivemulticenter cohort (ERUS-RAKT working group)

    A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere

    Get PDF
    The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75–105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice–Ramsperger–Kassel–Markus theory are used to show that even small Fe–Mg–silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm−3 prevents the formation of stable negative ions

    Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017

    Get PDF
    For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30 ground-based lidars. The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern Scandinavia over whole western and central Europe to the Mediterranean regions. Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017. Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017 during the peak of this event. The stratospheric smoke layers reached extinction coefficient values of more than 600 Mm−1 at 532 nm, a factor of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements. Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between 70-90 sr were measured at higher wavelengths. In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean (Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed until the end of August within Europe. An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development of these layers as well as their geometrical and optical properties will be presented

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 μg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe
    corecore