10 research outputs found
Lunar vertical-shaft mining system
This report proposes a method that will allow lunar vertical-shaft mining. Lunar mining allows the exploitation of mineral resources imbedded within the surface. The proposed lunar vertical-shaft mining system is comprised of five subsystems: structure, materials handling, drilling, mining, and planning. The structure provides support for the exploration and mining equipment in the lunar environment. The materials handling subsystem moves mined material outside the structure and mining and drilling equipment inside the structure. The drilling process bores into the surface for the purpose of collecting soil samples, inserting transducer probes, or locating ore deposits. Once the ore deposits are discovered and pinpointed, mining operations bring the ore to the surface. The final subsystem is planning, which involves the construction of the mining structure
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study
Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions.The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated.Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented.Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study
Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades
Why do species interact? A test of four hypotheses using Ceropegia (Apocynaceae) as a case study
Interactions between species form the basis for community structure and ecosystem function in all terrestrial and marine habitats, via energy flow and nutrient movement between trophic levels, and top-down and bottom-up control of species’ abundances. In addition, species interactions provide the impetus for the evolution of a huge range of biological novelty. In the absence of relationships such as mutualism, predation, parasitism, competition and commensalism, biodiversity would very much simpler than it is today, and the biosphere would be very different.
Despite this central importance of species interactions in relation to ecology, evolution and conservation biology, there is much that we do not understand about why certain species interact, why other species are excluded from those interactions, and how this in turn promotes organismal diversification through adaptation and co-evolution. In this study we test four non-exclusive hypotheses which relate to these questions, using the genus Ceropegia L. (Apocynaceae: Asclepiadoideae, Ceropegieae) as a case study. Ceropegia is a large Old World taxon of over 180 accepted species, with new species being regularly discovered.
We tested four non-exclusive hypotheses to account for why species interact using flower visitor data for over 60 species of Ceropegia across its range in relation to a cpDNA-nrDNA molecular phylogeny of the genus. The hypotheses were:
Hypothesis 1 – the coevolutionary hypothesis – this states that the pattern of species interactions that we recognise today is the result of reciprocal evolution between two unrelated clades of organisms, such that speciation in one clade results in speciation in the second clade.
Hypothesis 2 – the phylogenetic hypothesis – this relates to the fact that species are the products of the evolution of their ancestors. Thus, as well as evolving adaptations that relate to their life histories and behaviour at the current time, they are influenced by a range of phylogenetically conservative traits which (presumably) evolved in the distant ancestral past of that clade.
Hypothesis 3 – the biogeographic contingency hypothesis – states that species interact with one another on the basis of their current global and local distributions, i.e. they interact because, spatially, they can interact.
Hypothesis 4 – the local adaptation hypothesis – states that those features of the organismal phenotype which are required adaptations for a particular interaction have generally evolved locally (i.e. within the native range of the organism) in response to natural selection imposed by the interacting partner
Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives
Background and Aims Ceropegia (Apocynaceae subfamily Asclepiadoideae) is a large, Old World genus of >180 species, all of which possess distinctive flask-shaped flowers that temporarily trap pollinators. The taxonomic diversity of pollinators, biogeographic and phylogenetic patterns of pollinator exploitation, and the level of specificity of interactions were assessed in order to begin to understand the role of pollinators in promoting diversification within the genus.
Methods Flower visitor and pollinator data for approx. 60 Ceropegia taxa were analysed with reference to the main centres of diversity of the genus and to a cpDNA–nrDNA molecular phylogeny of the genus.
Key Results Ceropegia spp. interact with flower-visiting Diptera from at least 26 genera in 20 families, of which 11 genera and 11 families are pollinators. Size range of flies was 0·5–4·0 mm and approx. 94 % were females. Ceropegia from particular regions do not use specific fly genera or families, though Arabian Peninsula species are pollinated by a wider range of Diptera families than those in other regions. The basal-most clade interacts with the highest diversity of Diptera families and genera, largely due to one hyper-generalist taxon, C. aristolochioides subsp. deflersiana. Species in the more-derived clades interact with a smaller diversity of Diptera. Approximately 60 % of taxa are so far recorded as interacting with only a single genus of pollinators, the remaining 40 % being less conservative in their interactions. Ceropegia spp. can therefore be ecological specialists or generalists.
Conclusions The genus Ceropegia has largely radiated without evolutionary shifts in pollinator functional specialization, maintaining its interactions with small Diptera. Intriguing biogeographic and phylogenetic patterns may reflect processes of regional dispersal, diversification and subsequent specialization onto a narrower range of pollinators, though some of the findings may be caused by inconsistent sampling. Comparisons are made with other plant genera in the Aristolochiaceae and Araceae that have evolved flask-shaped flowers that trap female flies seeking oviposition sites
Diversity of Diptera families that pollinate Ceropegia (Apocynaceae) trap flowers: an update in light of new data and phylogenetic analyses
Pollination by flies (Diptera) has been important to the diversification and ecology of the flowering plants, but is poorly understood in contrast to pollination by other groups such as bees, butterflies and birds. Within the Apocynaceae the genera Ceropegia and Riocreuxia temporarily trap flies, releasing them after a fixed, speciesspecific period of time, during which pollination and/or pollen removal occurs. This “trap flower” pollination system shows convergent evolution with unrelated species in other families and fascinated Stefan Vogel for much of his career, leading to groundbreaking work on floral function in Ceropegia (Apocynaceae). In this new study we extend the work of the latest broad analysis published by some of the authors (Ollerton et al., 2009 – Annals of Botany). This incorporates previously unpublished data from India and Africa, as well as recently published information, on the diversity of pollinators exploited by Ceropegia. The analyses are based on a more accurate phylogenetic understanding of the relationships between the major groups, and significantly widens the biogeographic scope of our understanding of fly pollination within Ceropegia. Information about the pollinators of 69 taxa (species, subspecies and natural varieties) of Ceropegia is now available. Twenty five families of Diptera are known to visit the flowers of Ceropegia, of which sixteen are confirmed as pollinators. Most taxa are pollinated by species from a single family. Overall, there were no major biogeographic differences in the types of Diptera that were used in particular regions, though some subtle differences were apparent. Likewise there were no differences between the two major clades of Ceropegia, but clear differences when comparing the range of Diptera exploited by Ceropegia with that of the stapeliads. This clade, one of the largest in the Asclepiadoideae, is a fascinating example of a species radiation driven by an apparently relatively uniform set of pollinators
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study
Background and Aims: Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of \u3e5300 species with a worldwide distribution. A database representing \u3e10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods: The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results: Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions: Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study
• Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. • Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. • Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost threequarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. • Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades.Fil: Ollerton, Jeff. University of Northampton; Reino UnidoFil: Liede Schumann, Sigrid. University of Bayreuth; AlemaniaFil: Endress, Mary E.. Universitat Zurich; SuizaFil: Meve, Ulrich. University of Bayreuth; AlemaniaFil: Rech, AndrĂ© Rodrigo. Universidade Federal dos Vales do Jequitinhonha e Mucuri; BrasilFil: Shuttleworth, Adam. University of KwaZulu-Natal; SudáfricaFil: Keller, Hector Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Fishbein, Mark. Oklahoma State University; Estados UnidosFil: Alvarado Cárdenas, Leonardo O.. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Amorim, Felipe W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bernhardt, Peter. Saint Louis University; Estados UnidosFil: Celep, Ferhat. No especifĂca;Fil: Chirango, Yolanda. University of Cape Town; SudáfricaFil: Chiriboga Arroyo, Fidel. Eidgenössische Technische Hochschule ZĂĽrich; SuizaFil: Civeyrel, Laure. UniversitĂ© de Toulouse; FranciaFil: Cocucci, Andrea Aristides. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; ArgentinaFil: Cranmer, Louise. University of Northampton; Reino UnidoFil: Da Silva Batista, Inara Carolina. Universidade Federal do Rio de Janeiro; BrasilFil: De Jager, Linde. University of the Free State; SudáfricaFil: Deprá, Mariana Scaramussa. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Domingos Melo, Arthur. Universidade Federal de Pernambuco; BrasilFil: Dvorsky, Courtney. Saint Louis University; Reino UnidoFil: Gorostiague, Pablo. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Escuela de AgronomĂa. Laboratorio de Investigaciones Botánicas; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Salta; ArgentinaFil: Galetto, Leonardo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; ArgentinaFil: Torres, Carolina Cecilia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; ArgentinaFil: Wiemer, Ana Pia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; ArgentinaFil: Yamashiro,Tadashi. Tokushima University; JapĂłnFil: Nadia,Tarcila. Universidade Federal de Pernambuco; BrasilFil: Queiroz, Joel. Universidade Federal da Paraiba; BrasilFil: Quirino, Zelma. Universidade Federal da Paraiba; Brasi
Recommended from our members
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study.
Background and aimsLarge clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions.MethodsThe database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated.Key resultsMost Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented.ConclusionsWithin Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades