369 research outputs found

    Evaluation of Increased Vitamin D Fortification in High-Temperature, Short-Time–Processed 2% Milk, UHT-Processed 2% Fat Chocolate Milk, and Low-Fat Strawberry Yogurt

    Get PDF
    The objective of this study was to determine the effect of increased vitamin D fortification (250 IU/serving) of high-temperature, short-time (HTST)–processed 2% fat milk, UHT-processed 2% fat chocolate milk, and low-fat strawberry yogurt on the sensory characteristics and stability of vitamin D during processing and storage. Three replicates of HTST pasteurized 2% fat milk, UHT pasteurized 2% fat chocolate milk, and low-fat strawberry yogurt were manufactured. Each of the 3 replicates for all products contained a control (no vitamin D fortification), a treatment group with 100 IU vitamin D/serving (current level of vitamin D fortification), and a treatment group with 250 IU vitamin D/serving. A cold-water dispersible vitamin D3 concentrate was used for all fortifications. The HTST-processed 2% fat milk was stored for 21 d, with vitamin D analysis done before processing and on d 0, 14, and 21. Sensory analysis was conducted on d 14. The UHT-processed 2% fat chocolate milk was stored for 60 d, with vitamin D analysis done before processing and on d 0, 40, and 60. Sensory analysis was conducted on d 40. Low-fat strawberry yogurt was stored for 42 d, with vitamin D analysis done before processing, and on d 0, 28, and 42. Sensory analysis was conducted on d 28. Vitamin D levels in the fortified products were found to be similar to the target levels of fortification (100 and 250 IU vitamin D per serving) for all products, indicating no loss of vitamin D during processing. Vitamin D was also found to be stable over the shelf life of each product. Increasing the fortification of vitamin D from 100 to 250 IU/serving did not result in a change in the sensory characteristics of HTST-processed 2% fat milk, UHT-processed 2% fat chocolate milk, or low-fat strawberry yogurt. These results indicate that it is feasible to increase vitamin D fortification from 100 to 250 IU per serving in these products

    Bimodal distribution of the autocorrelation function in gamma-ray bursts

    Full text link
    Autocorrelation functions (ACFs) are studied for a sample of 16 long gamma-ray bursts (GRBs) with known redshift z, that were observed by the BATSE and Konus experiments. When corrected for cosmic time dilation, the ACF shows a bimodal distribution. A narrow width class (11 bursts) has at half-maximum a mean width of 1.6 s with a relative dispersion of 32%, while a broad width class (5 bursts) has a width of 7.5 s with a 4% dispersion. The separation between the two mean values is highly significant (> 7 standard deviations). This temporal property could be used on the large existing database of GRBs with unknown redshift. The broad width set shows a very good linear correlation between width at half-maximum and (1+z), with a correlation coefficient R=0.995 and a probability of chance alignment <0.0004. The potential application of this correlation to cosmology studies is discussed, using it in combination with recently proposed luminosity indicators.Comment: 7 pages, 7 figures. Accepted for publication in A&

    Implementation of P-Controller in Computational Fluid Dynamics (CFD) Simulation of a Pilot Scale Outlet Temperature Controlled Spray Dryer

    Full text link
    [EN] Most of the CFD simulations of spray dryers reported in the literature utilizes a fixed air inlet temperature numerical framework. In this paper, a numerical framework was introduced to model spray drying as an outlet air temperature controlled process. A P-controller numerical framework was introduced which allows the inlet temperature to be automatically adjusted based on the required outlet temperature set point. This numerical framework was evaluated with a simulation of a two-stage pilot scale spray drying system at the Davis Dairy Plant (South Dakota State University) which is used for commercial contract spray drying operation.Afshar, S.; Jubaer, H.; Metzger, L.; Patel, H.; Selomulya, C.; Woo, MW. (2018). Implementation of P-Controller in Computational Fluid Dynamics (CFD) Simulation of a Pilot Scale Outlet Temperature Controlled Spray Dryer. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 155-162. https://doi.org/10.4995/IDS2018.2018.7536OCS15516

    The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud

    Get PDF
    (ABRIDGED) We have applied the near-IR Barnes-Evans realization of the Baade-Wesselink method as calibrated by Fouque & Gieren (1997) to five metal-poor Cepheids with periods between 13 and 17 days in the Small Magellanic Cloud as well as to a sample of 34 Galactic Cepheids to determine the effect of metallicity on the period-luminosity (P-L) relation. For ten of the Galactic Cepheids we present new accurate and well sampled radial-velocity curves. The Baade-Wesselink analysis provides accurate individual distances and luminosities to the Cepheids in the two samples, allowing us to constrain directly, in a purely differential way, the metallicity effect on the Cepheid P-L relation. For the Galactic Cepheids we provide a new set of P-L relations which have zero-points in excellent agreement with astrometric and interferometric determinations. These relations can be used directly for the determination of distances to solar-metallicity samples of Cepheids in distant galaxies, circumventing any corrections for metallicity effects on the zero-point and slope of the P-L relation. We find evidence for both such metallicity effects in our data. Comparing our two samples of Cepheids at a mean period of about 15 days, we find a weak effect of metallicity on the luminosity similar to that adopted by the HST Key Project on the Extragalactic Distance Scale.Comment: 23 pages, 9 figures, accepted for publication in A&

    Optical and X-ray Transients from Planet-Star Mergers

    Full text link
    We evaluate the prompt observational signatures of the merger between a massive close-in planet (a `hot Jupiter') and its host star, events with an estimated Galactic rate of ~0.1-1/yr. Depending on the ratio of the mean density of the planet rho_p to that of the star rho_star, a merger results in three possible outcomes. If rho_p/rho_star > 5, then the planet directly plunges below the stellar atmosphere before being disrupted by tidal forces. Dissipation of orbital energy creates a hot wake behind the planet, producing a EUV/soft X-ray transient as the planet sinks below the stellar surface. The peak luminosity L_X ~ 1e36 erg/s is achieved weeks-months prior to merger, after which the stellar surface is enshrouded by an outflow. The final inspiral is accompanied by an optical transient powered by the recombination of hydrogen in the outflow, which peaks at L~1e37-38 erg/s on a timescale ~days. If instead rho_planet/rho_star < 5, then Roche Lobe overflow occurs above the stellar surface. For rho_p/rho_star < 1, mass transfer is stable, resulting the planet being accreted on a relatively slow timescale. However, for 1 < rho_p/rho_star < 5, mass transfer may instead be unstable, resulting in the planet being dynamically disrupted into an accretion disk around the star. Super-Eddington outflows from the disk power an optical transient with L~1e37-38 erg/s and characteristic duration ~week-months. The disk itself becomes visible once the accretion rate become sub-Eddington, resulting in a bolometric brightening and spectral shift to the UV. Optical transients from planet merger events may resemble classical novae, but are distinguished by lower ejecta mass and velocity ~100s km/s, and by hard pre- and post-cursor emission, respectively. Promising search strategies include combined optical, UV, and X-ray surveys of nearby massive galaxies with cadences from days to months.Comment: 20 pages, 11 figures, 2 tables, submitted to MNRA

    Calibrating the Cepheid Period-Luminosity relation from the infrared surface brightness technique I. The p-factor, the Milky Way relations, and a universal K-band relation

    Get PDF
    We determine Period-Luminosity relations for Milky Way Cepheids in the optical and near-IR bands. These relations can be used directly as reference for extra-galactic distance determination to Cepheid populations with solar metallicity, and they form the basis for a direct comparison with relations obtained in exactly the same manner for stars in the Magellanic Clouds, presented in an accompanying paper. In that paper we show that the metallicity effect is very small and consistent with a null effect, particularly in the near-IR bands, and we combine here all 111 Cepheids from the Milky Way, the LMC and SMC to form a best relation. We employ the near-IR surface brightness (IRSB) method to determine direct distances to the individual Cepheids after we have recalibrated the projection factor using the recent parallax measurements to ten Galactic Cepheids and the constraint that Cepheid distances to the LMC should be independent of pulsation period. We confirm our earlier finding that the projection factor for converting radial velocity to pulsational velocity depends quite steeply on pulsation period, p=1.550-0.186*log(P) in disagrement with recent theoretical predictions. We delineate the Cepheid PL relation using 111 Cepheids with direct distances from the IRSB analysis. The relations are by construction in agreement with the recent HST parallax distances to Cepheids and slopes are in excellent agreement with the slopes of apparent magnitudes versus period observed in the LMC.Comment: Accepted for publication by Astronomy and Astrophysics. 15 pages, 11 figure

    Baade-Wesselink distances and the effect of metallicity in classical cepheids

    Full text link
    The aim of this paper is to investigate the metallicity dependence of the PLPL-relation in VV and KK based on a sample of 68 Galactic Cepheids with individual Baade-Wesselink distances (some of the stars also have an HST-based parallax) and individually determined metallicities from high-resolution spectroscopy. Literature values of the VV-band, KK-band and radial velocity data have been collected for a sample of 68 classical cepheids that have their metallicity determined in the literature from high-resolution spectroscopy. Based on a (VK)(V-K) surface-brightness relation and a projection factor derived in a previous paper, distances have been derived from a Baade-Wesselink analysis. PLPL- and PLZPLZ-relations in VV and KK are derived. The effect of the adopted dependence of the projection factor on period is investigated. The change from a constant pp-factor to one recently suggested in the literature with a mild dependence on logP\log P results in a less steep slope by 0.1 unit, which is about the 1-sigma error bar in the slope itself. The observed slope in the PLPL-relation in VV in the LMC agrees with both hypotheses. In KK the difference between the Galactic and LMC slope is larger and would favour a mild period dependence of the pp-factor. The dependence on metallicity in VV and KK is found to be marginal, and independent of the choice of pp-factor on period. This result is severely limited by the small range in metallicity covered by the Galactic Cepheids.Comment: A&A accepte

    Open Questions in GRB Physics

    Get PDF
    Open questions in GRB physics are summarized as of 2011, including classification, progenitor, central engine, ejecta composition, energy dissipation and particle acceleration mechanism, radiation mechanism, long term engine activity, external shock afterglow physics, origin of high energy emission, and cosmological setting. Prospects of addressing some of these problems with the upcoming Chinese-French GRB mission, SVOM, are outlined.Comment: 27 pages. To appear in a special issue of Comptes Rendus Physique "GRB studies in the SVOM era", Eds. F. Daigne, G. Dubu

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure
    corecore