21 research outputs found

    Iron biogeochemistry in Antarctic pack ice during SIPEX-2

    No full text
    Our study quantified the spatial and temporal distribution of Fe and ancillary biogeochemical parameters at six stations visited during an interdisciplinary Australian Antarctic marine science voyage (SIPEX-2) within the East Antarctic first-year pack ice zone during September–October 2012. Unlike previous studies in the area, the sea ice Chlorophyll a, Particulate Organic Carbon and Nitrogen (POC and PON) maxima did not occur at the ice/water interface because of the snow loading and dynamic processes under which the sea ice formed. Iron in sea ice ranged from 0.9 to 17.4 nM for the dissolved (<0.2 µm) fraction and 0.04 to 990 nM for the particulate (>0.2 µm) fraction. Our results highlight that the concentration of particulate Fe in sea ice was highest when approaching the continent. The high POC concentration and high particulate iron to aluminium ratio in sea ice samples demonstrate that 71% of the particulate Fe was biogenic in composition. Our estimated Fe flux from melting pack ice to East Antarctic surface waters over a 30 day melting period was 0.2 µmol/m2/d of DFe, 2.7 µmol/m2/d of biogenic PFe and 1.3 µmol/m2/d of lithogenic PFe. These estimates suggest that the fertilization potential of the particulate fraction of Fe may have been previously underestimated due to the assumption that it is primarily lithogenic in composition. Our new measurements and calculated fluxes indicate that a large fraction of the total Fe pool within sea ice may be bioavailable and therefore, effective in promoting primary productivity in the marginal ice zone

    Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines

    Get PDF
    Lactic acid bacteria (LAB) are a promising solution to reduce exposure to dietary mycotoxins because of the unique mycotoxin decontaminating characteristic of some LAB. Ochratoxin A (OTA) is one of the most prominent mycotoxins found in agricultural commodities. The present work reports on the ability of Pediococcus parvulus strains that were isolated from Douro wines that spontaneously underwent malolactic fermentation to detoxify OTA. These strains were identified and characterised using a polyphasic approach that employed both phenotypic and genotypic methods. When cultivated on OTA-supplemented MRS media, OTA was biodegraded into OTα by certain P. parvulus strains. The presence of OTα was confirmed using LC-MS/MS. The conversion of OTA into OTα indicates that the OTA amide bond was hydrolysed by a putative peptidase. The rate of OTA biodegradation was found to be dependent on the inoculum size and on the incubation temperature. Adsorption assays with dead P. parvulus cells showed that approximately 1.3% ± 1.0 of the OTA was adsorbed onto cells wall, which excludes this mechanism in the elimination of OTA by strains that degrades OTA. Under optimum conditions, 50% and 90% of OTA was degraded in 6 and 19 h, respectively. Other LAB strains that belonged to different species were tested but did not degrade OTA. OTA biodegradation by P. parvulus UTAD 473 was observed in grape must. Because some P. parvulus strains have relevant probiotic properties, the strains that were identified could be particularly relevant to food and feed applications to counteract the toxic effects of OTA.This work was funded by FEDER funds through the "Programa Operacional Factores de Competitividade - COMPETE" and by national funds through "Fundacao para a Ciencia e a Tecnologia - FCT", Ref. FCOMP-01-0124-FEDER-028029 and PTDC/AGR-TEC/3900/2012, respectively. The authors also thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER. Luis Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from FCT

    Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E–150°W)

    Get PDF
    Iron, phosphate and nitrate are essential nutrients for phytoplankton growth and hence their supply into the surface ocean controls oceanic primary production. Here, we present a GEOTRACES zonal section (GP13; 30-33oS, 153oE-150oW) extending eastwards from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170oW-150oW). The supply of dissolved iron into the upper ocean (<100m) from the atmosphere and vertical diffusivity averaged 11 ±10 nmol m-2 d-1. In the remote South Pacific Ocean (170oW-150oW) atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface-water nitrate concentrations averaged 5 ±4 nmol L-1 between 170oW and 150oW whilst surface-water phosphate concentrations averaged 58 ±30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux, in remote South Pacific waters. The deep water N:P ratio averaged 16 ±3 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production

    Iron in sea ice: Review and new insights

    Get PDF
    International audienceThe discovery that melting sea ice can fertilize iron (Fe)-depleted polar waters has recently fostered trace metal research efforts in sea ice. The aim of this review is to summarize and synthesize the current understanding of Fe biogeochemistry in sea ice. To do so, we compiled available data on particulate, dissolved, and total dissolvable Fe (PFe, DFe and TDFe, respectively) from sea-ice studies from both polar regions and from sub-Arctic and northern Hemisphere temperate areas. Data analysis focused on a circum-Antarctic Fe dataset derived from 61 ice cores collected during 10 field expeditions carried out between 1997 and 2012 in the Southern Ocean. Our key findings are that 1) concentrations of all forms of Fe (PFe, DFe, TDFe) are at least a magnitude larger in fast ice and pack ice than in typical Antarctic surface waters; 2) DFe, PFe and TDFe behave differently when plotted against sea-ice salinity, suggesting that their distributions in sea ice are driven by distinct, spatially and temporally decoupled processes; 3) DFe is actively extracted from seawater into growing sea ice; 4) fast ice generally has more Fe-bearing particles, a finding supported by the significant negative correlation observed between both PFe and TDFe concentrations in sea ice and water depth; 5) the Fe pool in sea ice is coupled to biota, as indicated by the positive correlations of PFe and TDFe with chlorophyll a and particulate organic carbon; and 6) the vast majority of DFe appears to be adsorbed onto something in sea ice. This review also addresses the role of sea ice as a reservoir of Fe and its role in seeding seasonally ice-covered waters. We discuss the pivotal role of organic ligands in controlling DFe concentrations in sea ice and highlight the uncertainties that remain regarding the mechanisms of Fe incorporation in sea ice

    Constraining the Contribution of Hydrothermal Iron to Southern Ocean Export Production Using Deep Ocean Iron Observations

    Get PDF
    Hydrothermal iron supply contributes to the Southern Ocean carbon cycle via the regulation of regional export production. However, as hydrothermal iron input estimates are coupled to helium, which are uncertain depending on whether helium inputs are based on ridge spreading rates or inverse modelling, questions remain regarding the magnitude of the export production impacts. A particular challenge is the limited observations of dissolved iron (dFe) supply from the abyssal Southern Ocean ridge system to directly assess different hydrothermal iron supply scenarios. We combine ocean biogeochemical modelling with new observations of dFe from the abyssal Southern Ocean to assess the impact of hydrothermal iron supply estimated from either ridge spreading rate or inverse helium modelling on Southern Ocean export production. The hydrothermal contribution to dFe in the upper 250 m reduces 4–5 fold when supply is based on inverse modelling, relative to those based on spreading rate, translating into a 36–73% reduction in the impact of hydrothermal iron on export production. However, only the spreading rate input scheme reproduces observed dFe anomalies >1 nM around the circum-Antarctic ridge. The model correlation with observations drops 3 fold under the inverse modelling input scheme. The best dFe scenario has a residence time for hydrothermal iron that is between 21 and 34 years, highlighting the importance of rapid physical mixing to surface waters. Overall, because of its short residence time, hydrothermal Fe supplied locally by circum-Antarctic ridges is most important to the Southern Ocean carbon cycle and our results highlight decoupling between hydrothermal iron and helium supply
    corecore