341 research outputs found

    Secondary building units, nets and bonding in the chemistry of metal–organic frameworks

    Get PDF
    This critical review presents a comprehensive study of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) towards construction and synthesis of metal–organic frameworks (MOFs). We describe the geometries of 131 SBUs, their connectivity and composition. This contribution presents a comprehensive list of the wide variety of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) in the construction and synthesis of metal–organic frameworks. The SBUs discussed here were obtained from a search of molecules and extended structures archived in the Cambridge Structure Database (CSD, version 5.28, January 2007) which included only crystals containing metal carboxylate linkages (241 references)

    Oxygen Atom Transfer and Oxidative Water Incorporation in Cuboidal Mn_(3)MO_n Complexes Based on Synthetic, Isotopic Labeling, and Computational Studies

    Get PDF
    The oxygen-evolving complex (OEC) of photosystem II contains a Mn_(4)CaO_n catalytic site, in which reactivity of bridging oxidos is fundamental to OEC function. We synthesized structurally relevant cuboidal Mn_(3)MO_n complexes (M = Mn, Ca, Sc; n = 3,4) to enable mechanistic studies of reactivity and incorporation of ÎŒ_(3)-oxido moieties. We found that Mn^(IV)_(3)CaO_4 and Mn^(IV)_(3)ScO_4 were unreactive toward trimethylphosphine (PMe_3). In contrast, our Mn^(III)_(2)Mn^(IV)_(2)O_4 cubane reacts with this phosphine within minutes to generate a novel Mn^(III)_(4)O_3 partial cubane plus Me_(3)PO. We used quantum mechanics to investigate the reaction paths for oxygen atom transfer to phosphine from Mn^(III)_(2)Mn^(IV)_(2)O_4 and Mn^(IV)_(3)CaO_4. We found that the most favorable reaction path leads to partial detachment of the CH_(3)COO^– ligand, which is energetically feasible only when Mn(III) is present. Experimentally, the lability of metal-bound acetates is greatest for Mn^(III)_(2)Mn^(IV)_(2)O_4. These results indicate that even with a strong oxygen atom acceptor, such as PMe_3, the oxygen atom transfer chemistry from Mn_(3)MO_4 cubanes is controlled by ligand lability, with the Mn^(IV)_(3)CaO_4 OEC model being unreactive. The oxidative oxide incorporation into the partial cubane, Mn^(III)_(4)O_3, was observed experimentally upon treatment with water, base, and oxidizing equivalents. ^(18)O-labeling experiments provided mechanistic insight into the position of incorporation in the partial cubane structure, consistent with mechanisms involving migration of oxide moieties within the cluster but not consistent with selective incorporation at the site available in the starting species. These results support recent proposals for the mechanism of the OEC, involving oxido migration between distinct positions within the cluster

    Visible Light Sensitized CO2 Activation by the Tetraaza [Co^(II)N_4H(MeCN)]^(2+) Complex Investigated by FT-IR Spectroscopy and DFT Calculations

    Get PDF
    In situ FT-IR measurements and electronic structure calculations are reported for the reduction of CO_2 catalyzed by the macrocyclic complex [Co^(II)N_4H]^(2+) (N_4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(17),2,11,13,15-pentaene). Beginning from the [Co^(II)N_4H]^(2+) resting state of the complex in wet acetonitrile solution, two different visible light sensitizers with substantially different reducing power are employed to access reduced states. Accessing reduced states of the complex with a [Ru(bpy)_3]^(2+) sensitizer yields an infrared band at 1670 cm^(–1) attributed to carboxylate, which is also observed for an authentic sample of the one-electron reduced complex [CoN_4H(MeCN)]^+ in CO_2 saturated acetonitrile solution. The results are interpreted based on calculations using the pure BP86 functional that correctly reproduces experimental geometries. Continuum solvation effects are also included. The calculations show that Co is reduced to Co^I in the first reduction, which is consistent with experimental d–d spectra of square Co(I) macrocycle complexes. The energy of the CO_2 adduct of the one-electron reduced catalyst complex is essentially the same as for [CoN_4H(MeCN)]^+, which implies that only a fraction of the latter forms an adduct with CO_2. By contrast, the calculations indicate a crucial role for redox noninnocence of the macrocyclic ligand in the doubly reduced state, [Co^I(N_4H) –‱], and show that [Co^I(N_4H) –‱] binds partially reduced CO_2 fairly strongly. Experimentally accessing [Co^I(N_4H) –‱] with an Ir(bpy)_3 sensitizer with greater reducing power closes the catalytic cycle as FT-IR spectroscopy shows CO production. Use of isotopically substituted C^(18)O_2 also shows clear evidence for ^(18)O-substituted byproducts from CO_2 reduction to CO

    Differential leukocyte expression of IFITM1 and IFITM3 in patients with severe pandemic influenza A(H1N1) and COVID-19

    Get PDF
    Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.Introduction Methods - Human samples - IFITM expression in humans - Influenza infection in mice - IFITM expression in mice - Cytokine levels in mouse lungs - Study approval - Statistical analysis Results - Participant characteristics - IFITM1 and IFITM3 in patients with severe pandemic influenza A(H1N1) - High-dose influenza A (H1N1) virus infection downregulates IFITM expression in mice - IFITM1 and IFITM3 in severe COVID-19 Discussio

    Measurement of the 12C(n,p)12B cross section at n-TOF at CERN by in-beam activation analysis

    Get PDF
    The integral cross section of the 12C(n,p)12B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n-TOF facility at CERN. The measurement relies on the activation technique with the ÎČ decay of 12B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.Peer reviewedFinal Accepted Versio

    Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN

    Get PDF
    The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.Peer reviewedFinal Accepted Versio

    The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region

    Get PDF
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)

    Measurement of 73 Ge(n,Îł) cross sections and implications for stellar nucleosynthesis

    Get PDF
    © 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe

    High-accuracy determination of the U 238 / U 235 fission cross section ratio up to ≈1 GeV at n-TOF at CERN

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOIThe U238 to U235 fission cross section ratio has been determined at n-TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n-TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n-TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.Peer reviewedFinal Published versio

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,Îł) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well
    • 

    corecore