39 research outputs found

    Family history of mood disorder and characteristics of major depressive disorder: A STAR*D (sequenced treatment alternatives to relieve depression) study

    Get PDF
    Wstęp. Klinicyści rutynowo pytają pacjentów z depresją o występowanie chorób psychicznych w rodzinie. Nie wiadomo jednak, czy pacjenci, w których rodzinie występowały tego typu schorzenia różnią się od osób z negatywnym wywiadem rodzinnym w tym kierunku. W badaniu porównano cechy demograficzne i kliniczne dużej grupy pacjentów ambulatoryjnych zgłaszających się do lekarza z powodu depresji bez objawów psychotycznych. Pacjenci udzielili informacji na temat krewnych pierwszego stopnia chorujących na depresję lub chorobę afektywną dwubiegunową. Metody. Osoby poddane badaniu rekrutowano do wieloośrodkowego badania klinicznego - Sekwencyjne Alternatywy Terapeutyczne w Leczeniu Depresji (STAR*D, Sequenced Treatment Alternatives to Relieve Depression). Oceniono różnice w cechach klinicznych i demograficznych u pacjentów z dodatnim i ujemnym wywiadem rodzinnym w kierunku zaburzeń afektywnych, po skorygowaniu ich pod względem wieku, płci, rasy i grupy etnicznej. Wyniki. Wśród pacjentów z dodatnim wywiadem rodzinnym w kierunku zaburzeń afektywnych (n = 2265; 56,5%) przeważały kobiety; depresja rozpoczęła się u nich wcześniej niż u pacjentów z ujemnym wywiadem rodzinnym w kierunku zaburzeń afektywnych (n = 1740; 43,5%). Nie znaleziono znaczących różnic w zakresie objawów depresyjnych, nasilenia depresji, jej nawrotowości, podtypów choroby, czy też funkcjonowania w ciągu dnia. Wnioski. Kobiety 2-krotnie częściej niż mężczyźni zgłaszały występowanie zaburzeń afektywnych w rodzinie, dodatni wywiad rodzinny wiązał się z wcześniejszym wystąpieniem choroby u probanta. Młody wiek w chwili zachorowania na depresję wydaje się charakteryzować rodzinny (a co za tym idzie uwarunkowany genetycznie) podtyp depresji, co jest zgodne z wynikami wcześniejszych badań.Introduction. Clinicians routinely ask patients with major depressive disorder (MDD) about their family history. It is unknown, however, if patients who report a positive family history differ from those who do not. This study compared the demographic and clinical features of a large cohort of treatment-seeking outpatients with nonpsychotic MDD who reported that they did or did not have at least one firstdegree relative who had either MDD or bipolar disorder. Methods. Subjects were recruited for the STAR*D multicenter trial. Differences in demographic and clinical features for patients with and without a family history of mood disorders were assessed after correcting for age, sex, race, and ethnicity. Results. Patients with a family history of mood disorder (n = 2265; 56.5%) were more frequently women and had an earlier age of onset of depression, as compared to those without such a history (n = 1740; 43.5%). No meaningful differences were found in depressive symptoms, severity, recurrence, depressive subtype, or daily function. Conclusions. Women were twice as likely as men to report a positive family history of mood disorder, and a positive family history was associated with younger age of onset of MDD in the proband. Consistent with prior research, early age of onset appears to define a familial and, by extension, genetic subtype of major depressive disorder

    Pond ecology and conservation: research priorities and knowledge gaps

    Get PDF
    Ponds are among the most biodiverse and ecologically important freshwater habitats globally and may provide a significant opportunity to mitigate anthropogenic pressures and reverse the decline of aquatic biodiversity. Ponds also provide important contributions to society through the provision of ecosystem services. Despite the ecological and societal importance of ponds, freshwater research, policy, and conservation have historically focused on larger water bodies, with significant gaps remaining in our understanding and conservation of pond ecosystems. In May 2019, pond researchers and practitioners participated in a workshop to tackle several pond ecology, conservation, and management issues. Nine research themes and 30 research questions were identified during and following the workshop to address knowledge gaps around: (1) pond habitat definition; (2) global and long-term data availability; (3) anthropogenic stressors; (4) aquatic–terrestrial interactions; (5) succession and disturbance; (6) freshwater connectivity; (7) pond monitoring and technological advances; (8) socio-economic factors; and (9) conservation, management, and policy. Key areas for the future inclusion of ponds in environmental and conservation policy were also discussed. Addressing gaps in our fundamental understanding of pond ecosystems will facilitate more effective research-led conservation and management of pondscapes, their inclusion in environmental policy, support the sustainability of ecosystem services, and help address many of the global threats driving the decline in freshwater biodiversity.Additional co-authors: James C. White, Robert A. Briers, Kate L. Mathers, Michael J. Jeffries, and Paul J. Woo

    Heterozygous FOXN1 Variants Cause Low TRECs and Severe T Cell Lymphopenia, Revealing a Crucial Role of FOXN1 in Supporting Early Thymopoiesis

    Get PDF
    FOXN1 is the master regulatory gene of thymic epithelium development. FOXN1 deficiency leads to thymic aplasia, alopecia, and nail dystrophy, accounting for the nude/severe combined immunodeficiency (nu/SCID) phenotype in humans and mice. We identified several newborns with low levels of T cell receptor excision circles (TRECs) and T cell lymphopenia at birth, who carried heterozygous loss-of-function FOXN1 variants. Longitudinal analysis showed persistent T cell lymphopenia during infancy, often associated with nail dystrophy. Adult individuals with heterozygous FOXN1 variants had in most cases normal CD4+ but lower than normal CD8+ cell counts. We hypothesized a FOXN1 gene dosage effect on the function of thymic epithelial cells (TECs) and thymopoiesis and postulated that these effects would be more prominent early in life. To test this hypothesis, we analyzed TEC subset frequency and phenotype, early thymic progenitor (ETP) cell count, and expression of FOXN1 target genes (Ccl25, Cxcl12, Dll4, Scf, Psmb11, Prss16, and Cd83) in Foxn1nu/+ (nu/+) mice and age-matched wild-type (+/+) littermate controls. Both the frequency and the absolute count of ETP were significantly reduced in nu/+ mice up to 3 weeks of age. Analysis of the TEC compartment showed reduced expression of FOXN1 target genes and delayed maturation of the medullary TEC compartment in nu/+ mice. These observations establish a FOXN1 gene dosage effect on thymic function and identify FOXN1 haploinsufficiency as an important genetic determinant of T cell lymphopenia at birth

    Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study

    Get PDF
    Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior–posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = −0.02, SE = 0.004, P-value = 2.10 × 10(−8)). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10(−4)). In exome-array single-variant analysis (P-value threshold = 9 × 10(−7)), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10(−5)). In the gene-based analysis (P-value threshold = 1.85 × 10(−6)), PCSK5 showed an association with AAD (P-value = 8.03 × 10(−7)). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = −0.003, P-value = 0.02), triglycerides (beta = −0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe

    Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

    Get PDF
    Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Variant annotation was supported by software resources provided via the Caché Campus program of the InterSystems GmbH to Alexander Teumer

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies

    Get PDF
    Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics
    corecore