205 research outputs found
In situ neutron diffraction study on the effect of aluminium fluoride on phase transformation of mullite from alumina/clay
The effect of aluminium fluoride (AIF3) on the phase transformation sequence of mullite (3AI2032Si02) from two different types of kaolin (kaolinite and halloysite) (AI2Si20s(OH)4-2H20) within an alumina (A1203) matrix for a temperature range of 20 - 1500 C was investigated using in situ neutron diffraction. Samples containing a mixture of A1F3 (0 - 5 wt%), AI203 and kaolin were heated up to 1500 C and then furnace cooled. During the heating procedure, one hour neutron diffraction scans were conducted at 600, 900, 1100, 1200, 1300 and 1400 C, followed by six consecutive one hour scans at 1500 C and finally a one hour scan at room temperature upon cooling. The diffraction patterns collected between 1100 and 1500 C were analyzed by Rietveld analysis. The observed phase transformations exhibited a typical sequence found inclay/alumina ceramics. Corundum, mullite and cristobalite were observed. A common feature among the specimens containing different amounts of AIF3 and kaolin was that the content of corundum decreased as the amount of mullite increased, whilst the cristobalite content tended to peak near the temperature where the amounts of corundum and mullite were approximately equal. The mullitization temperature was reduced as the AIF3 content increased for both kaolinite and halloysite. The presence of AIF3 appeared to reduce the onset temperature for mullite nucleation, which is at a much lower temperature compared to that of grain growth. However, AIF3 also seemed to lower densification. Likewise mechanical properties of the resulting specimens were determined
The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies
This paper presents both the result of a search for fossil systems (FSs)
within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results
of a study of the stellar mass assembly and stellar populations of their fossil
galaxies. In total, 17 groups and clusters are identified at z < 0.25 with
large magnitude gaps between the first and fourth brightest galaxies. All the
information necessary to classify these systems as fossils is provided. For
both groups and clusters, the total and fractional luminosity of the brightest
galaxy is positively correlated with the magnitude gap. The brightest galaxies
in FSs (called fossil galaxies) have stellar populations and star formation
histories which are similar to normal brightest cluster galaxies (BCGs).
However, at fixed group/cluster mass, the stellar masses of the fossil galaxies
are larger compared to normal BCGs, a fact that holds true over a wide range of
group/cluster masses. Moreover, the fossil galaxies are found to contain a
significant fraction of the total optical luminosity of the group/cluster
within 0.5R200, as much as 85%, compared to the non-fossils, which can have as
little as 10%. Our results suggest that FSs formed early and in the highest
density regions of the universe and that fossil galaxies represent the end
products of galaxy mergers in groups and clusters. The online FS catalog can be
found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added:
http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm
The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation
We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation
since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with
spectroscopic redshifts drawn from the XMM Cluster Survey first data release
(XCS-DR1). This is the first study spanning this redshift range using a single,
large, homogeneous cluster sample. Using an orthogonal regression technique, we
find no evidence for evolution in the slope or intrinsic scatter of the
relation since z~1.5, finding both to be consistent with previous measurements
at z~0.1. However, the normalisation is seen to evolve negatively with respect
to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09}
(T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero
evolution case. We see milder, but still negative, evolution with respect to
self-similar when using a bisector regression technique. We compare our results
to numerical simulations, where we fit simulated cluster samples using the same
methods used on the XCS data. Our data favour models in which the majority of
the excess entropy required to explain the slope of the L_X-T relation is
injected at high redshift. Simulations in which AGN feedback is implemented
using prescriptions from current semi-analytic galaxy formation models predict
positive evolution of the normalisation, and differ from our data at more than
5 sigma. This suggests that more efficient feedback at high redshift may be
needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added
references to match published versio
Support for Redistribution in Western Europe: Assessing the role of religion
Previous sociological studies have paid little attention to religion as a central determinant of individual preferences for redistribution. In this article we argue that religious individuals, living in increasingly secular societies, differ in political preferences from their secular counterparts. Based on the theory of religious cleavages, we expect that religious individuals will oppose income redistribution by the state. Furthermore, in contexts where the polarization between religious and secular individuals is large, preferences for redistribution will be lower. In the empirical analysis we test our predictions in a multilevel framework, using data from the European Social Survey 2002â2006 for 16 Western European countries. After controlling for a wide range of individual socio-economic factors and for welfare-state policies, religion plays and important explanatory role. We find that both Catholics and Protestants strongly oppose income redistribution by the state. The cleavage between religious and secular individuals is far more important than the difference between denominations. Using a refined measure of religious polarization, we also find that in more polarized context the overall level of support for redistribution is lower
The XMM Cluster Survey: X-ray analysis methodology
The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters
using all publicly available data in the XMM-Newton Science Archive. Its main
aims are to measure cosmological parameters and trace the evolution of X-ray
scaling relations. In this paper we describe the data processing methodology
applied to the 5,776 XMM observations used to construct the current XCS source
catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50
background-subtracted X-ray counts are extracted from a total non-overlapping
area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are
detected with > 300 background-subtracted X-ray photon counts, and we
demonstrate that robust temperature measurements can be obtained down to this
count limit. We describe in detail the automated pipelines used to perform the
spectral and surface brightness fitting for these candidates, as well as to
estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray
temperatures to a typical accuracy of < 40 (< 10) per cent have been measured
to date. We also present the methodology adopted for determining the selection
function of the survey, and show that the extended source detection algorithm
is robust to a range of cluster morphologies by inserting mock clusters derived
from hydrodynamical simulations into real XMM images. These tests show that the
simple isothermal beta-profiles is sufficient to capture the essential details
of the cluster population detected in the archival XMM observations. The
redshift follow-up of the XCS cluster sample is presented in a companion paper,
together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing
our optical analysis methodology and presenting a first set of confirmed
clusters has now been submitted to MNRA
Sunyaev-Zel'dovich clusters in millennium gas simulations
Large surveys using the SunyaevâZelâdovich (SZ) effect to find clusters of galaxies are now starting to yield large numbers of systems out to high redshift, many of which are new dis- coveries. In order to provide theoretical interpretation for the release of the full SZ cluster samples over the next few years, we have exploited the large-volume Millennium gas cosmo- logical N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samplesthattheintrinsic(spherical)Y500âM500relationhasverylittlescatter(Ïlog10Y â0.04), is insensitive to cluster gas physics and evolves to redshift 1 in accordance with self-similar expectations. Our preheating and feedback models predict scaling relations that are in excel- lent agreement with the recent analysis from combined Planck and XMMâNewton data by the Planck Collaboration. This agreement is largely preserved when r500 and M500 are derived using thehydrostaticmassproxy,YX,500,albeitwithsignificantlyreducedscatter(Ïlog10Y â0.02),a result that is due to the tight correlation between Y500 and YX,500. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line of sight, by extracting cluster Y500 values from 50 simulated 5 Ă 5-deg2 sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y500âM500 relation increases in the preheating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r500 in all cases. The profiles themselves are well described by generalized Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter. In conclusion, our results support the notion that Y500 is a robust mass proxy for use in cosmological analyses with clusters
The XMM Cluster Survey: Predicted overlap with the Planck Cluster Catalogue
We present a list of 15 clusters of galaxies, serendipitously detected by the
XMM Cluster Survey (XCS), that have a high probability of detection by the
Planck satellite. Three of them already appear in the Planck Early
Sunyaev-Zel'dovich (ESZ) catalogue. The estimation of the Planck detection
probability assumes the flat Lambda cold dark matter (LambdaCDM) cosmology most
compatible with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data. It
takes into account the XCS selection function and Planck sensitivity, as well
as the covariance of the cluster X-ray luminosity, temperature, and integrated
comptonization parameter, as a function of cluster mass and redshift,
determined by the Millennium Gas Simulations. We also characterize the
properties of the galaxy clusters in the final data release of the XCS that we
expect Planck will have detected by the end of its extended mission. Finally,
we briefly discuss possible joint applications of the XCS and Planck data.Comment: Closely matches the version accepted for publication by MNRAS, 7
pages, 3 figures. The XCS-DR1 catalogue, together with optical and X-ray
(colour-composite and greyscale) images for each cluster, is publicly
available from http://xcs-home.org/datarelease
The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints
We forecast the constraints on the values of sigma_8, Omega_m, and cluster
scaling relation parameters which we expect to obtain from the XMM Cluster
Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo
Markov Chain analysis of the evolution of the number density of galaxy clusters
that takes into account a detailed simulated selection function. Comparing our
current observed number of clusters shows good agreement with predictions. We
determine the expected degradation of the constraints as a result of
self-calibrating the luminosity-temperature relation (with scatter), including
temperature measurement errors, and relying on photometric methods for the
estimation of galaxy cluster redshifts. We examine the effects of systematic
errors in scaling relation and measurement error assumptions. Using only (T,z)
self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to
the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining
the normalization and slope of the luminosity-temperature relation to +-6 and
+-13 per cent (at 1sigma) respectively in the process. Self-calibration fails
to jointly constrain the scatter and redshift evolution of the
luminosity-temperature relation significantly. Additional archival and/or
follow-up data will improve on this. We do not expect measurement errors or
imperfect knowledge of their distribution to degrade constraints significantly.
Scaling-relation systematics can easily lead to cosmological constraints 2sigma
or more away from the fiducial model. Our treatment is the first exact
treatment to this level of detail, and introduces a new `smoothed ML' estimate
of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in
MNRAS. High-resolution figures available at http://xcs-home.org (under
"Publications"
ZFOURGE/CANDELS: On the Evolution of \u3cem\u3eM\u3c/em\u3e* Galaxy Progenitors from \u3cem\u3ez\u3c/em\u3e=3 to 0.5*
Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 Ă 1010 M â (defined here to be MW-mass) and 1011 M â (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the SĂ©rsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency
The Swift X-ray Telescope Cluster Survey: data reduction and cluster catalog for the GRB fields
(abridged) We present a new sample of X-ray selected galaxy groups and
clusters serendipitously observed with Swift and the X-ray Telescope (XRT). We
searched the XRT archive for extended sources among 336 GRB fields with
galactic latitude |b|>20{\deg}. Our selection algorithm yields a flux-limited
sample of 72 X-ray groups and clusters with a well defined selection function
and negligible contamination. The sky coverage of the survey goes from the
total 40 deg^2 to 1 deg^2 at a flux limit of 10^-14 erg/s/cm^-2 (0.5-2 keV).
Here we describe the XRT data processing, the statistical calibration of the
survey, and the catalog of detected cluster candidates. All the X-ray sources
are detected in the Swift-XRT soft (0.5-2 keV) band. A size parameter defined
as the half power radius (HPR) measured inside a box of 45x45 arcsec, is
assigned to each source. We select extended sources by applying a threshold on
the Half Power Radius and we calibrate its dependence on the measured net
counts and on the image background with extensive simulations in order to
identify all the sources with ~99% probability of being extended. We compute
the logN-logS of our sample, finding very good agreement with previous deep
cluster surveys. A cross correlation with published X-ray catalogs shows that
only 9 sources were already detected, none of them as extended. Therefore, ~90%
of our sources are new X-ray detections. We also cross correlated our sources
with optical catalogs, finding 20 previously identified clusters. Overall,
about ~65% of our sources are new detections. The XRT follow-up observation of
GRBs is providing an excellent serendipitous survey for groups and clusters of
galaxies, mainly thanks to the low background of XRT and its constant angular
resolution across the field of view. About 33% of the sample has spectroscopic
or photometric redshifts from public optical surveys.Comment: 17 pages, 16 figures, A&A published. Minor typos correcte
- âŠ