78 research outputs found

    The challenges of transferring chronic illness patients to adult care: reflections from pediatric and adult rheumatology at a US academic center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the transfer of care process from pediatric to adult rheumatology for patients with chronic rheumatic disease. The purpose of this study is to examine changes in disease status, treatment and health care utilization among adolescents transferring to adult care at the University of California San Francisco (UCSF).</p> <p>Methods</p> <p>We identified 31 eligible subjects who transferred from pediatric to adult rheumatology care at UCSF between 1995–2005. Subject demographics, disease characteristics, disease activity and health care utilization were compared between the year prior to and the year following transfer of care.</p> <p>Results</p> <p>The mean age at the last pediatric rheumatology visit was 19.5 years (17.4–22.0). Subject diagnoses included systemic lupus erythematosus (52%), mixed connective tissue disease (16%), juvenile idiopathic arthritis (16%), antiphospholipid antibody syndrome (13%) and vasculitis (3%). Nearly 30% of subjects were hospitalized for disease treatment or management of flares in the year prior to transfer, and 58% had active disease at the time of transfer. In the post-transfer period, almost 30% of subjects had an increase in disease activity. One patient died in the post-transfer period. The median transfer time between the last pediatric and first adult rheumatology visit was 7.1 months (range 0.7–33.6 months). Missed appointments were common in the both the pre and post transfer period.</p> <p>Conclusion</p> <p>A significant percentage of patients who transfer from pediatric to adult rheumatology care at our center are likely to have active disease at the time of transfer, and disease flares are common during the transfer period. These findings highlight the importance of a seamless transfer of care between rheumatology providers.</p

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16”M h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Journalism as usual: The use of social media as a newsgathering tool in the coverage of the Iranian elections in 2009

    Get PDF
    The Iranian elections of June 2009 and the ensuing protests were hailed as the 'Twitter revolution' in the media in the United Kingdom. However, this study of the use of sources by journalists covering the events shows that despite their rhetoric of the importance of social media in alerting the global community to events in Iran, journalists themselves did not turn to that social media for their own information, but relied most on traditional sourcing practices: political statements, expert opinion and a handful of 'man on the street' quotes for colour. This study shows that although the mythology of the Internet as a place where all voices are equal, and have equal access to the public discourse continues – a kind of idealized 'public sphere' – the sourcing practices of journalists and the traditions of coverage continue to ensure that traditional voices and sources are heard above the crowd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Author Correction: Drivers of seedling establishment success in dryland restoration efforts

    Get PDF
    1 PĂĄg. CorreciĂłn errata.In the version of this Article originally published, the surname of author Tina Parkhurst was incorrectly written as Schroeder. This has now been corrected.Peer reviewe

    Termite sensitivity to temperature affects global wood decay rates.

    Get PDF
    Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
    • 

    corecore