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Abstract: Deadwood is a large global carbon store with store size partially determined by biotic 

decay. Microbial wood decay rates are known to respond to changing temperature and 

precipitation. Termites are also important decomposers in the tropics but are less well studied; 

understanding their climate sensitivities is needed to estimate climate change effects on wood 

carbon pools. Using data from 133 sites spanning 6 continents, we found that termite discovery 

and consumption were highly sensitive to temperature (decay increasing >6.8× per 10°C 

increase), even more than microbes. Termite decay impacts were greatest in tropical seasonal 

forests, tropical savannas and subtropical deserts. With tropicalization (i.e., warming shifts to 

tropical climates), termite wood decay will likely increase as termites access more of earth’s 

surface.  

One-Sentence Summary: Termites respond to temperature much more strongly than microbes, 

changing our view of wood decay and the carbon cycle.  

  



 
 

9 
 

Main Text:  

Forested systems contain ~676 Gt of biomass (1), with a large fraction of their carbon 

immobilized for centuries in living and deadwood (2, 3). Carbon storage depends partly on decay 

rates of deadwood pools by organisms, which vary across climatic gradients (4, 5). Regional 

studies suggest wood decay by microbes approximately doubles with a 10°C temperature 

increase (decay effective Q10 = ~2) (2, 6) driven, in part, by enzyme kinetics. Further, microbial 

decay occurs via extracellular enzymes whose delivery is dependent on moisture (7, 8), meaning 

microbial decay should increase with humidity. Less is known about the climate sensitivities of 

important animal decayers, which also influence how climate change affects deadwood carbon 

stores.  

 Increasing evidence shows that termites are important decayers at local to regional scales 

(7, 9, 10). The abundance of wood-feeding termites across biomes is poorly understood (11), but 

decay by termites should be temperature sensitive. First, termites increasingly contribute to wood 

decay in warm locations (12–14), with distributions set in part by ectothermic temperature 

tolerances (15). Termite wood decay depends on both discovery and consumption of wood by 

searching animals, followed by chemical decay via a cultivated set of microbial symbionts. 

Therefore, second, this symbiont chemical decay will also be shaped by temperature-dependent 

enzyme kinetics. In contrast to microbes, termites are likely less sensitive to moisture. Termites 

have a diversity of adaptations to conserve it that presumably buffer their sensitivities to low 

precipitation (16–18), meaning termite discovery and decay likely continue with increasing 

aridity. 

To test climate sensitivities of termite and microbial decay, we conducted a replicated 

wood decay experiment at 133 sites across extensive temperature and precipitation gradients 
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representing most of the global bioregions (Fig. 1). At each site, researchers monitored decay of 

wood blocks for a common substrate, Pinus radiata (or in a few cases closely related Pinus 

species; see (19)), for up to 48 months. All sites had harvests at ~12 months and most at ~24 

months with some sites including ~6 month, ~36 month and/or ~48 month harvests. We allowed 

microbial access to all samples and manipulated termite access (“microbes” versus 

“microbes+termites” treatments); wood blocks were wrapped in fine mesh with or without larger 

holes to allow or exclude termites. At each site, researchers placed pairs of treatment blocks with 

number of pairs equal to number of harvests planned at each of 20 stations (a few sites placed 

fewer stations), meaning each harvest from a site had 40 wood blocks (mean = 33.6 + 14.2 

(1SD)) harvested at a given time point across both treatments; stations were spaced at least 5 m 

apart (see (19), table S11). A total of 8,922 blocks were collected across all sites. Our focal 

species, P. radiata, was non-native at all locations, meaning no site decay agents evolved with it 

as a substrate.  

Termite discovery (i.e., estimated percentage of wood blocks with evidence of termites 

per year at a site) was greatest, but also highly variable, at low latitudes and elevations and where 

temperature and precipitation were high (Fig. 1A, B, fig. S1; table S1); low latitudes and 

elevations represent these warmer climates. High wood block discovery (>50%) occurred at 

temperatures above 21.3°C. In multivariate models, wood block discovery by termites rapidly 

increased with increasing temperatures (Fig. 2A, table S3) and temperature and precipitation 

significantly interacted (Figs 1B, 2A, table S3). Termite discovery was higher in warm tropical 

biomes in arid and semi-arid sites (despite small sample sizes) than in mesic and humid sites (at 

25°C, discovery estimates at 250 mm were 1.4× higher than at 2000 mm and 1.9× higher than at 
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2700 mm), while in cool temperate biomes the reverse patterns were observed (at 7°C, discovery 

estimates at 2700 mm were 4× higher than at 2000 mm and 150× higher than at 250 mm).  

Microbial decay was fastest at low latitudes and elevations and where temperature and 

precipitation were high, although latitude and precipitation were weaker predictors than elevation 

and temperature (Fig. 1C, fig. S2; table S2). Microbial temperature sensitivity was similar to  

regional studies (decay effective Q10 of 1.73; 95% CI: 1.45-2.09) (2, 6). In multivariate models, 

precipitation was not a significant predictor of microbial decay (Fig. 2B, table S4). When 

termites discovered wood, decay rates were higher at low elevations and where temperature was 

high (Fig. 1C, fig. S2; table S2). Further, decay rates in termite discovered wood were more 

sensitive to changes in temperature (decay effective Q10 of 6.85; 95% CI: 4.73-9.92) than decay 

rates in undiscovered wood where microbes dominated decay. In multivariate models, 

precipitation was not a significant predictor of decay for termite discovered wood (Fig. 2C, table 

S5).  

The termite-discovered wood decay effective Q10 is much steeper than any previously 

recorded for microbes (2, 6), suggesting that a different mechanism determines termite versus 

microbial wood decay. The observed high consumption rate by termites at warm sites may be 

related to termite assemblage composition, large population numbers, high activity or some 

combination of these mechanisms. Consequently, subtropical, tropical or global models using a 

single microbial-derived decay effective Q10 are likely to: (1) underpredict wood decay; (2) 

overpredict terrestrial carbon storage (all else being equal, e.g., inputs into deadwood pools); and 

(3) underpredict temperature sensitivity of decay. Use of termite-corrected decay effective Q10s, 

which may vary based on termite assemblage composition, location and/or wood substrate, 

should improve accuracy of modeled wood decay under current and future climate predictions. 
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Such model modifications can capitalize on empirical measures in the literature such as ours for 

termites and (20) for insects more broadly. Our results suggest precipitation variation influences 

the discovery, but not decay phase, of termite wood decay. However, strong temperature and 

precipitation interaction influences on discovery mean that termites increased overall decay most 

in subtropical deserts and tropical seasonal forests and savannas (Fig. 1C). Further, even though 

microbial abundance is sensitive to precipitation (4, 5), temperature was a stronger driver than 

precipitation for microbial-driven decay, perhaps mediated through effects on enzyme kinetics 

(21). Differences in decay sensitivity to precipitation were small with only microbial-mediated 

wood decay weakly sensitive to precipitation; microbial decay largely occurs via release of 

moisture-sensitive extracellular enzymes (7, 8), while termites can conserve moisture, buffering 

aridity effects (16–18). While low termite discovery in warm humid locations remains surprising, 

competitive interactions between decayers (11, 13), biome-specific adaptations to moisture, 

variation in resource availability affecting foraging behavior, etc., may reduce discovery. 

Given the high sensitivities of both termite wood discovery and decay to temperature, 

termites will likely expand their range in a warming world, with important consequences for 

carbon cycling. Using data-driven estimates of temperature and precipitation effects on termite 

discovery (Table S3), we estimated discovery rates across the globe, restricting predictions to the 

range in MAP covered by our sites +10%. Termites today have potential to discover large 

amounts of deadwood (>50%) at sites across 30.2% of the land surface (assuming our estimated 

discovery rates apply across wood and termite species; Fig. 3). To bracket potential climate 

change effects on discovery, we used our estimated climate relationships with all available 

midcentury CMIP6 climate models for SSP 1-2.6 and 5-8.5 (22). All scenarios predicted an 

expansion of termite discovery in tropical and subtropical regions with the degree of expansion 
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depending strongly on extent of global warming (Fig. 3). Warming shifts to more tropical 

climates are occurring in many ecosystems globally (23), and temperature sensitivities 

demonstrated in this study suggest termite contributions to wood decay will expand both within 

and beyond the tropics with such tropicalization. Our estimates may even underpredict termite 

effects in areas where fungus-growing termites occur (i.e., Africa and Asia) (12, 16), meriting 

future research. The impact of termites on wood decay is both large and expected to increase 

(Fig. 3); it also has a different functional form than microbial decay with a clear two-step 

process: discovery and decay. 

 

References and Notes 

1.  G. Kindermann, I. McCallum, S. Fritz, M. Obersteiner, A global forest growing stock, 

biomass and carbon map based on FAO statistics. Silva Fenn. 42, 387–396 (2008). 

2.  M. E. Harmon, B. G. Fasth, M. Yatskov, D. Kastendick, J. Rock, C. W. Woodall, Release 

of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance 

Manag. 15, 1 (2020). 

3.  J. Mackensen, J. Bauhus, Density loss and respiration rates in coarse woody debris of Pinus 

radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biol. Biochem. 35, 177–186 

(2003). 

4.  A. T. Austin, P. M. Vitousek, Precipitation, decomposition and litter decomposability of 

Metrosideros polymorpha in native forests on Hawai’i. J. Ecol. 88, 129–138 (2000). 

5.  B. N. Marais, C. Brischke, H. Militz, J. H. Peters, L. Reinhardt, Studies into Fungal Decay 

of Wood In Ground Contact—Part 1: The Influence of Water-Holding Capacity, Moisture 

Content, and Temperature of Soil Substrates on Fungal Decay of Selected Timbers. 



 
 

14 
 

Forests. 11, 1284 (2020). 

6.  N. Fierer, B. P. Colman, J. P. Schimel, R. B. Jackson, Predicting the temperature 

dependence of microbial respiration in soil: A continental-scale analysis. Glob. 

Biogeochem. Cycles. 20 (2006), doi:10.1029/2005GB002644. 

7.  W. K. Cornwell, J. H. C. Cornelissen, S. D. Allison, J. Bauhus, P. Eggleton, C. M. Preston, 

F. Scarff, J. T. Weedon, C. Wirth, A. E. Zanne, Plant traits and wood fates across the globe: 

rotted, burned, or consumed? Glob. Change Biol. 15, 2431–2449 (2009). 

8.  A. D. A’Bear, T. H. Jones, E. Kandeler, L. Boddy, Interactive effects of temperature and 

soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. 

Soil Biol. Biochem. 70, 151–158 (2014). 

9.  M. D. Ulyshen, Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. 

Philos. Soc. 91, 70–85 (2016). 

10.  H. M. Griffiths, L. A. Ashton, C. L. Parr, P. Eggleton, The impact of invertebrate 

decomposers on plants and soil. New Phytol. 231, 2142–2149 (2021). 

11.  R. A. Clement, H. Flores-Moreno, L. A. Cernusak, A. W. Cheesman, A. R. Yatsko, S. D. 

Allison, P. Eggleton, A. E. Zanne, Assessing the Australian Termite Diversity Anomaly: 

How Habitat and Rainfall Affect Termite Assemblages. Front. Ecol. Evol. 9, 237 (2021). 

12.  H. M. Griffiths, L. A. Ashton, T. A. Evans, C. L. Parr, P. Eggleton, Termites can 

decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 

(2019). 

13.  M. A. Bradford, D. S. Maynard, T. W. Crowther, P. T. Frankson, J. E. Mohan, C. 

Steinrueck, G. F. (Ciska) Veen, J. R. King, R. J. Warren II, Belowground community 

turnover accelerates the decomposition of standing dead wood. Ecology. 102, e03484 



 
 

15 
 

(2021). 

14.  C. Guo, B. Tuo, H. Ci, E.-R. Yan, J. H. C. Cornelissen, Dynamic feedbacks among tree 

functional traits, termite populations and deadwood turnover. J. Ecol. 109, 1578–1590 

(2021). 

15.  O. F. Palin, P. Eggleton, Y. Malhi, C. A. J. Girardin, A. Rozas-Dávila, C. L. Parr, Termite 

Diversity along an Amazon–Andes Elevation Gradient, Peru. Biotropica. 43, 100–107 

(2011). 

16.  J. A. Bonachela, R. M. Pringle, E. Sheffer, T. C. Coverdale, J. A. Guyton, K. K. Caylor, S. 

A. Levin, C. E. Tarnita, Termite mounds can increase the robustness of dryland ecosystems 

to climatic change. Science (2015), doi:10.1126/science.1261487. 

17.  L. A. Ashton, H. M. Griffiths, C. L. Parr, T. A. Evans, R. K. Didham, F. Hasan, Y. A. Teh, 

H. S. Tin, C. S. Vairappan, P. Eggleton, Termites mitigate the effects of drought in tropical 

rainforest. Science. 363, 174–177 (2019). 

18.  A. W. Cheesman, L. A. Cernusak, A. E. Zanne, Relative roles of termites and saprotrophic 

microbes as drivers of wood decay: A wood block test. Austral Ecol. 43, 257–267 (2018). 

19.  Materials and methods are available as supplementary materials. 

20.  S. Seibold, W. Rammer, T. Hothorn, R. Seidl, M. D. Ulyshen, J. Lorz, M. W. Cadotte, D. 

B. Lindenmayer, Y. P. Adhikari, R. Aragón, S. Bae, P. Baldrian, H. Barimani Varandi, J. 

Barlow, C. Bässler, J. Beauchêne, E. Berenguer, R. S. Bergamin, T. Birkemoe, G. Boros, R. 

Brandl, H. Brustel, P. J. Burton, Y. T. Cakpo-Tossou, J. Castro, E. Cateau, T. P. Cobb, N. 

Farwig, R. D. Fernández, J. Firn, K. S. Gan, G. González, M. M. Gossner, J. C. Habel, C. 

Hébert, C. Heibl, O. Heikkala, A. Hemp, C. Hemp, J. Hjältén, S. Hotes, J. Kouki, T. 

Lachat, J. Liu, Y. Liu, Y.-H. Luo, D. M. Macandog, P. E. Martina, S. A. Mukul, B. Nachin, 



 
 

16 
 

K. Nisbet, J. O’Halloran, A. Oxbrough, J. N. Pandey, T. Pavlíček, S. M. Pawson, J. S. 

Rakotondranary, J.-B. Ramanamanjato, L. Rossi, J. Schmidl, M. Schulze, S. Seaton, M. J. 

Stone, N. E. Stork, B. Suran, A. Sverdrup-Thygeson, S. Thorn, G. Thyagarajan, T. J. 

Wardlaw, W. W. Weisser, S. Yoon, N. Zhang, J. Müller, The contribution of insects to 

global forest deadwood decomposition. Nature. 597, 77–81 (2021). 

21.  G. Wang, W. M. Post, M. A. Mayes, Development of microbial-enzyme-mediated 

decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. 

23, 255–272 (2013). 

22.  V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, K. E. Taylor, 

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental 

design and organization. Geosci. Model Dev. 9, 1937–1958 (2016). 

23.  A. Vergés, P. D. Steinberg, M. E. Hay, A. G. B. Poore, A. H. Campbell, E. Ballesteros, K. 

L. Heck, D. J. Booth, M. A. Coleman, D. A. Feary, W. Figueira, T. Langlois, E. M. 

Marzinelli, T. Mizerek, P. J. Mumby, Y. Nakamura, M. Roughan, E. van Sebille, A. S. 

Gupta, D. A. Smale, F. Tomas, T. Wernberg, S. K. Wilson, The tropicalization of temperate 

marine ecosystems: climate-mediated changes in herbivory and community phase shifts. 

Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014). 

24.  R. E. Ricklefs, The Economy of Nature (Macmillan, 2008). 

25.  J. T. Weedon, W. K. Cornwell, J. H. C. Cornelissen, A. E. Zanne, C. Wirth, D. A. Coomes, 

Global meta-analysis of wood decomposition rates: a role for trait variation among tree 

species? Ecol. Lett. 12, 45–56 (2009). 

26.  B. Oberle, M. R. Lee, J. A. Myers, O. L. Osazuwa-Peters, M. J. Spasojevic, M. L. Walton, 

D. F. Young, A. E. Zanne, Accurate forest projections require long-term wood decay 



 
 

17 
 

experiments because plant trait effects change through time. Glob. Change Biol. 26, 864–

875 (2020). 

27.  S. E. Fick, R. J. Hijmans, WorldClim 2: new 1-km spatial resolution climate surfaces for 

global land areas. Int. J. Climatol. 37, 4302–4315 (2017). 

28.  R. J. Hijmans, J. van Etten, M. Sumner, J. Cheng, D. Baston, A. Bevan, R. Bivand, L. 

Busetto, M. Canty, B. Fasoli, D. Forrest, A. Ghosh, D. Golicher, J. Gray, J. A. Greenberg, 

P. Hiemstra, K. Hingee, A. Ilich, I. for M. A. Geosciences, C. Karney, M. Mattiuzzi, S. 

Mosher, B. Naimi, J. Nowosad, E. Pebesma, O. P. Lamigueiro, E. B. Racine, B. 

Rowlingson, A. Shortridge, B. Venables, R. Wueest, raster: Geographic Data Analysis and 

Modeling (2022), (available at https://CRAN.R-project.org/package=raster). 

29.  V. Ștefan, plotbiomes (2021), (available at https://github.com/valentinitnelav/plotbiomes). 

30.  R Core Team, R: A language and environment for statistical computing. R   Foundation for 

Statistical Computing, Vienna, Austria. URL   https://www.R-project.org/. (2021). 

31.  V. Spinu, G. Grolemund, H. Wickham, D. Vaughan, I. Lyttle, I. Costigan, J. Law, D. 

Mitarotonda, J. Larmarange, J. Boiser, C. H. Lee, G. Inc, lubridate: Make Dealing with 

Dates a Little Easier (2021), (available at https://CRAN.R-project.org/package=lubridate). 

32.  A. Canty, B. Ripley, boot: Bootstrap Functions (Originally by Angelo Canty for S) (2021), 

(available at https://CRAN.R-project.org/package=boot). 

33.  D. Makowski, D. Lüdecke, M. S. Ben-Shachar, I. Patil, B. M. Wiernik, R. Siegel, report: 

Automated Reporting of Results and Statistical Models (2022), (available at 

https://CRAN.R-project.org/package=report). 

34.  D. Lüdecke, D. Makowski, I. Patil, M. S. Ben-Shachar, B. M. Wiernik, P. Waggoner, J. R. 

Stevens, M. Smith, J. Bossek, see: Visualisation Toolbox for “easystats” and Extra Geoms, 



 
 

18 
 

Themes and Color Palettes for “ggplot2” (2022), (available at https://CRAN.R-

project.org/package=see). 

35.  D. Makowski, B. M. Wiernik, I. Patil, D. Lüdecke, M. S. Ben-Shachar, M. White, M. M. 

Rabe, correlation: Methods for Correlation Analysis (2022), (available at https://CRAN.R-

project.org/package=correlation). 

36.  D. Makowski, D. Lüdecke, M. S. Ben-Shachar, I. Patil, modelbased: Estimation of Model-

Based Predictions, Contrasts and Means (2022), (available at https://CRAN.R-

project.org/package=modelbased). 

37.  M. S. Ben-Shachar, D. Makowski, D. Lüdecke, I. Patil, B. M. Wiernik, K. Kelley, D. 

Stanley, J. Burnett, J. Karreth, effectsize: Indices of Effect Size and Standardized 

Parameters (2022), (available at https://CRAN.R-project.org/package=effectsize). 

38.  D. Lüdecke, D. Makowski, M. S. Ben-Shachar, I. Patil, S. Højsgaard, B. M. Wiernik, Z. J. 

Lau, V. Arel-Bundock, J. Girard, C. Maimone, N. Ohlsen, D. E. Morrison, parameters: 

Processing of Model Parameters (2022), (available at https://CRAN.R-

project.org/package=parameters). 

39.  D. Lüdecke, D. Makowski, M. S. Ben-Shachar, I. Patil, P. Waggoner, B. M. Wiernik, V. 

Arel-Bundock, M. Jullum, performance: Assessment of Regression Models Performance 

(2022), (available at https://CRAN.R-project.org/package=performance). 

40.  D. Makowski, D. Lüdecke, M. S. Ben-Shachar, I. Patil, M. D. Wilson, B. M. Wiernik, P.-C. 

Bürkner, T. Mahr, H. Singmann, Q. F. Gronau, S. Crawley, bayestestR: Understand and 

Describe Bayesian Models and Posterior Distributions (2022), (available at 

https://CRAN.R-project.org/package=bayestestR). 

41.  D. Makowski, D. Lüdecke, I. Patil, M. S. Ben-Shachar, B. M. Wiernik, E. Bacher, 



 
 

19 
 

datawizard: Easy Data Wrangling (2022), (available at https://CRAN.R-

project.org/package=datawizard). 

42.  D. Lüdecke, D. Makowski, I. Patil, P. Waggoner, M. S. Ben-Shachar, B. M. Wiernik, V. 

Arel-Bundock, A. Hayes, insight: Easy Access to Model Information for Various Model 

Objects (2022), (available at https://CRAN.R-project.org/package=insight). 

43.  easystats/easystats: The R easystats-project, (available at 

https://github.com/easystats/easystats). 

44.  D. Bates, M. Maechler, B. Bolker  [aut, S. Walker, R. H. B. Christensen, H. Singmann, B. 

Dai, F. Scheipl, G. Grothendieck, P. Green, J. Fox, A. Bauer, P. N. Krivitsky, lme4: Linear 

Mixed-Effects Models using “Eigen” and S4 (2022), (available at https://CRAN.R-

project.org/package=lme4). 

45.  T. L. Pedersen, patchwork: The Composer of Plots (2020), (available at https://CRAN.R-

project.org/package=patchwork). 

46.  D. Lüdecke, F. Aust, S. Crawley, M. S. Ben-Shachar, ggeffects: Create Tidy Data Frames 

of Marginal Effects for “ggplot” from Model Outputs (2022), (available at https://CRAN.R-

project.org/package=ggeffects). 

47.  H. Wickham, forcats: Tools for Working with Categorical Variables (Factors) (2021), 

(available at https://CRAN.R-project.org/package=forcats). 

48.  H. Wickham, stringr: Simple, Consistent Wrappers for Common String Operations (2019), 

(available at https://CRAN.R-project.org/package=stringr). 

49.  H. Wickham, R. François, L. Henry, K. Müller, dplyr: A Grammar of Data Manipulation 

(2022), (available at https://CRAN.R-project.org/package=dplyr). 

50.  L. Henry, H. Wickham, purrr: Functional Programming Tools (2020), (available at 



 
 

20 
 

https://CRAN.R-project.org/package=purrr). 

51.  H. Wickham, J. Hester, R. Francois, J. Bryan, S. Bearrows, J. Jylänki, M. Jørgensen, readr: 

Read Rectangular Text Data (2022), (available at https://CRAN.R-

project.org/package=readr). 

52.  H. Wickham, M. Girlich, tidyr: Tidy Messy Data (2022), (available at https://CRAN.R-

project.org/package=tidyr). 

53.  K. Müller, H. Wickham, R. Francois, J. Bryan, tibble: Simple Data Frames (2022), 

(available at https://CRAN.R-project.org/package=tibble). 

54.  H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, H. 

Yutani, D. Dunnington, ggplot2: Create Elegant Data Visualisations Using the Grammar of 

Graphics (2022), (available at https://CRAN.R-project.org/package=ggplot2). 

55.  H. Wickham, tidyverse: Easily Install and Load the “Tidyverse” (2021), (available at 

https://CRAN.R-project.org/package=tidyverse). 

56.  N. Frerebeau, B. Lebrun, V. Arel-Bundock, khroma: Colour Schemes for Scientific Data 

Visualization (2019), (available at https://hal.archives-ouvertes.fr/hal-01927931). 

57.  J. Fox, S. Weisberg, An R Companion to Applied Regression (Sage, Thousand Oaks, CA, 

Third., 2019; https://us.sagepub.com/en-us/nam/an-r-companion-to-applied-

regression/book246125). 

Acknowledgments: For materials, field, and lab assistance, we thank the Australian Landscape 

Trust Team, Juan Martínez de Aragón, Eric Roy, Hugh Wilson, Kylie Brice, Bethanie Coleman, 

Brendan Delroy, Coline Deveautour, Suzanne Donn, Generci Assis Neves, Ricardo Marques 

Barreiros, Ricardo Marques Barreiros, Generci Assis Neves from Resineves Agroflorestal 

company, Alfred Lochner, Pousada Vale do Céu, Humberto Robles, María M. Rivera, and Grant 



 
 

21 
 

Kirker. We also thank the World Climate Research Programme for producing and making 

available their model output, the Earth System Grid Federation (ESGF) for archiving the data 

and providing access, and the multiple funding agencies who support CMIP6 and ESGF. Steve 

Allison, Tom Crowther and three anonymous reviewers provided helpful comments on the 

manuscript, and Abbey Yatsko helped with figure and manuscript formatting. 

Funding:  

US National Science Foundation DEB-1655759, (AEZ)  

US National Science Foundation DEB-2149151 (AEZ) 

US National Science Foundation DEB-1713502 (MA) 

US National Science Foundation DEB-1713435 (MA)  

US National Science Foundation DEB-1647502 (NAB)  

US National Science Foundation DEB-1546686 (GG)  

US National Science Foundation DEB-1831952 (GG)  

George Washington University (AEZ) 

USDA Forest Service (GG) 

Centre College Faculty Development Funds (MLG) 

Australia Terrestrial Ecosystem Research Network National Collaborative Research 

Infrastructure Strategy (PRG, MK, MJL, MMB, RPS, JS, LH, MN, SMP, TJW, SKA) 

Royal Society-FCDO Africa Capacity Building Initiative (CLP, GWQ, SAB, KB, MPR) 

New Phytologist Foundation (ATA) 

Fondecyt grant 1160329 (CD) 

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES) (EVDB, 

ASM, RFM, SFF, TMCS) 



 
 

22 
 

Department of Ecology and Conservation of the Federal University of Lavras (TMCS) 

CNPq (EVDB, RSO) 

FAPEMIG (EVDB) 

Australian Academy of Science 2017 Thomas Davies Research Grant (JRP) 

Australian Research Council DP160103765 (JRP) 

UK National Environment Research Council NE/L000016/1 (LAA) 

Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil NERC - FAPESP 

19/07773-1 (RSO, AMD)  

Environment Research and Technology Development Fund ERTDF, JPMEERF15S11420 

of the Environmental Restoration and Conservation Agency of Japan (ASM, KO) 

COLCIENCIAS No. FP44842-046-2017 (JMP) 

Spanish Government PID2019-110521GB-I00 (JP, GP, RO) 

Catalan Government grant SGR 2017-1005 (JP, GP, RO) 

Fundación Ramón Areces ELEMENTAL-CLIMATE (JP, GP, RO) 

Consejo Nacional de Investigaciones Científicas y Técnicas (LIP) 

University of Buenos Aires (UBA) (LIP) 

National Scientific and Technical Research Council (CONICET) (LIP) 

National Agency for Scientific and Technological Promotion (ANPCyT - PICT 2472- 2019 

- PICT 1593-2018) (LIP) 

National Agency for the Promotion of Research, Technological Development and 

Innovation, Scientific and Technological Research Project 2018-01561 PICT 2018-

01561 (FPT) 

ANID PIA/BASAL FB210006 (AF) 



 
 

23 
 

Millennium Science Initiative Program NCN2021-050 (AF) 

iDiv German Research Foundation DFG– FZT 118, 202548816 (NE) 

European Research Council Horizon 2020 research and innovation program no. 677232 

(NE) 

Author contributions:  

Conceptualization: AEZ 

Methodology: AEZ, AWC, LAC, MK, JWD 

Investigation: AEZ, AWC, LAC, MK, JRP, JWD, ATA, ATC, PE, KO, CLP, ECA, SAB, 

MA, CAG, DMGA, RA, MA, SKA, LAA, NAB, JB, MPB, JBer, MMB, JAB, KB, TJB, 

DC, DCF, LAC, AWC, TMCS, JC, JHC, TJC, AMD, CD, NE, FEO, AF, RDF, AFe, 

MALF, MLG, GG, FG, PRG, EG, HMG, MGL, MH, MMH, NH, LH, JMJ, AK, MK, JAK, 

TDL, MJL, CM, CMN, RFM, MSM, WSM, ASM, ASDM, MN, RO, RSO, AO, MJP, GP, 

JP, LIP, JMP, CMP, TP, SMP, JPr, GWQ, VRD, RR, MPR, LFR, MAR, CS, RPS, MCS, 

FFS, MGS, JS, MKT, FPT, DYPT, DT, MT, MDU, OVB, EVDB, RSPL, GFV, JGV, TJW, 

GW, CW, MJW, PCZ 

Visualization: HFM, JRP, WKC 

Funding acquisition: AEZ, AWC, LAC, MK, JRP, JWD, ATA, ATC, PE, KO, CLP, ECA, 

SAB, MA, CAG, DMGA, RA, MA, SKA, LAA, NAB, JB, MPB, JBer, MMB, JAB, KB, 

TJB, DC, DCF, LAC, AWC, TMCS, JC, JHC, TJC, AMD, CD, NE, FEO, AF, RDF, AFe, 

MALF, MLG, GG, FG, PRG, EG, HMG, MGL, MH, MMH, NH, LH, JMJ, AK, MK, JAK, 

TDL, MJL, CM, CMN, RFM, MSM, WSM, ASM, ASDM, MN, RO, RSO, AO, MJP, GP, 

JP, LIP, JMP, CMP, TP, SMP, JPr, GWQ, VRD, RR, MPR, LFR, MAR, CS, RPS, MCS, 



 
 

24 
 

FFS, MGS, JS, MKT, FPT, DYPT, DT, MT, MDU, OVB, EVDB, RSPL, GFV, JGV, TJW, 

GW, CW, MJW, PCZ 

Project administration: AEZ 

Supervision: AEZ 

Writing – original draft: AEZ, HFM, JRP, WKC, JWD, ATA, ATC 

Writing – review & editing: AWC, LAC, MK, ATA, ATC, PE, KO, CLP, ECA, SAB, MA, 

CAG, DMGA, RA, MA, SKA, LAA, NAB, JB, MPB, JBer, MMB, JAB, KB, TJB, DC, 

DCF, LAC, AWC, TMCS, JC, JHC, TJC, AMD, CD, NE, FEO, AF, RDF, AFe, MALF, 

MLG, GG, FG, PRG, EG, HMG, MGL, MH, MMH, NH, LH, JMJ, AK, MK, JAK, TDL, 

MJL, CM, CMN, RFM, MSM, WSM, ASM, ASDM, MN, RO, RSO, AO, MJP, GP, JP, 

LIP, JMP, CMP, TP, SMP, JPr, GWQ, VRD, RR, MPR, LFR, MAR, CS, RPS, MCS, FFS, 

MGS, JS, MKT, FPT, DYPT, DT, MT, MDU, OVB, EVDB, RSPL, GFV, JGV, TJW, GW, 

CW, MJW, PCZ 

Competing interests: LFR is also affiliated with Eldorado Brasil Celulose, Três Lagoas, Brazil. 

PRG is also affiliated with Michigan State University, Hickory Corners, United States. 

Data and materials availability: Data are available at 

https://doi.org/10.6084/m9.figshare.19920416.v1 and code are available at 

https://doi.org/10.5281/zenodo.6804781 . 

Supplementary Materials 

Materials and Methods 

Figs. S1 to S4 

Tables S1 to S12 



 
 

25 
 

References (25-57) 

Figure Legends: 

Fig. 1. Geographic, biome and climatic distribution of experimental sites. (A) Dots denote 

the 133 study site locations. (B) Study site distribution across mean annual temperatures (MAT), 

mean annual precipitations (MAP) and Whittaker biomes (24). In (A) and (B), color of the dots 

represents termite discovery rate (i.e., estimated percentage of wood blocks with evidence of 

termites per year at a site). (C) Decay rate (k) estimates across Whittaker biomes (shown by 

arrows and colors matching legend in (B)), with boxplots for each biome representing blocks 

discovered by termites (dashed boxplots on right of pair) and blocks undiscovered by termites 

(solid boxplots on left of pair; examples of discovered blocks in fig. S3). Note that the y-axis is 

ln-transformed but tick labels represent untransformed values for decay. For boxplots, center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, 

outliers. Numbers on top of solid boxplots on left of pair indicate total number of sites per 

biome; numbers on top of dashed boxplots on right of pair indicate number of sites where termite 

discovery occurred. 

 

Fig. 2. Discovery and decay of wood based on significant (tables S3-5) climatic predictors. 

(A) Termite discovery rate, the estimated percentage of wood blocks in the microbes+termites 

treatment across all sites with evidence of termites per year, across mean annual temperature 

(MAT) and mean annual precipitation (MAP), (B) Decay rates (k) of termite undiscovered wood 

across MAT, and (C) Decay rates (k) of termite discovered wood across MAT (Note: MAP was 

not a significant predictor of termite undiscovered or discovered wood). Symbols in figures 

denote role of wood-feeding termites and/or wood-dwelling microbes . Solid lines 
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represent logistic (for A) or linear (for B and C) regression predictions at 250 mm MAP (orange; 

representative of mean desert/savanna biomes), 2000 mm MAP (cream; representative of mean 

temperate biomes) and 2700 mm MAP (blue; representative of mean tropical/temperate humid 

biomes). Dashed lines represent 95% confidence intervals around predictions. The y-axes for B 

and C are ln-transformed but tick labels represent untransformed values for decay.  

 

Fig. 3. Predicted termite discovery by mid-century under different climate projections. 

Global maps showing minimum and maximum termite expansions scenarios based on the model 

in Table S3 and CMIP6 forecasts for 2041-2060. (A) Stronger climate change scenarios (SSP 5-

8.5 UKESM1-0-LL) had the largest expansion in discovery rates and (B) weaker climate change 

scenarios (SSP 1-2.6 MPI-ESM1-2-HR) had the smallest. For (A) and (B), termite discovery 

categories were rare (<5% = blue), continuing low (<50% = light blue), current high (>50% = 

orange), midcentury expansion to high (>50% = red) and unable to predict (grey), restricting 

predictions to the range in MAP covered by our sites (± 10%). We did not model the transitions 

from rare (<5%; blue) to continuing low (>5% & <50%; light blue) discovery. Panel (C) shows 

forecast increases in terrestrial area (km2) with discovery >50% by midcentury versus forecast 

mean terrestrial warming relative to a historical baseline. Each point denotes a forecast based on 

one individual CMIP6 SSP 5-8.5 (blue) or SSP 1-2.6 (red) climate model. The x-axis of panel 

(C) is the mean forecast 2041-2060 warming above the 1970-2000 baseline for terrestrial areas 

only.  
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Fig. 3  
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Materials and Methods 
In this study, 8,922 wood blocks were deployed across 133 sites in 20 countries and on all 
continents except Antarctica (Figure 1A, table S11). The majority of sites were established in 
2017, with 6 sites established in 2018 in Puerto Rico with the delay due to Hurricane Maria. 
Untreated wood was sourced from locations within countries or regions (i.e., Europe) and 
followed protocols established in Cheesman et al. (18). Field sites were all part of individual PI's 
local projects, meaning they were under the umbrella of ongoing projects, not needing specific 
permits. Most locations used Pinus radiata, but a few study sites were unable to access P. 
radiata; they instead used P. taeda (Brazil), P. elliotti (French Guiana), or southern yellow pine 
(likely P. echinata) (Panama). We accounted for these differences based on wood chemistry (see 
below). We targeted wood-dwelling microbes and wood-feeding termites in this study as these 
are the two primary biotic wood decay agents globally (7). We note that this study uses a 
common substrate, allowing us to leverage a network of climatically diverse sites to directly 
compare differences in decay agents and environmental gradients. This is a logical first step to 
address such questions; however, using targeted pine wood from sawn lumber has limitations. It 
lacks bark and may interact with local decay agents differently to native species that vary in 
wood construction to pine.  

Wood was cut into blocks at volume of ~403 cm3, and blocks were dried at 120°C to 
constant mass and weighed for initial dry mass. Wood blocks were haphazardly divided into two 
treatments; all treatments allowed wood-dwelling microbe access with half the blocks excluding 
(=microbes) and the other half including (=microbes+termites) wood-feeding termites. Wood 
blocks in all treatments were wrapped with 300 𝝻m nylon or polyester mesh bags sealed with 
stainless-steel staples. Bags in the microbes+termites treatment had 10 holes (~5 mm diameter) 
punched into the mesh on the underside of the bag to allow termite access. In our statistical 
analyses (see below), holes did not alter wood decay rates e.g., through altered microclimate. 

Sites deployed 20 stations (with a few deploying less); each station had treatment pairs of 
wood blocks, one for microbes and one for microbes+termites. Treatment pairs were replicated 
at each station for all planned harvest time points (table S11), and one treatment pair was 
removed from each station at a given harvest time point. All sites had harvests at ~12 months and 
most sites had harvests at ~24 months with some sites including ~6 month, ~36 month and/or 
~48 month harvests (table S11). Stations were spaced >5 m apart from one another and >0.5m 
away from existing large deadwood, termite mounds, exposed rocks or substantial water flow 
paths. All wood blocks were covered with 70% green shade cloth to reduce solar radiation 
degradation of mesh bags. 

For initial wood samples from each source location, 3-5 blocks were sent to University of 
Illinois for analysis. Sawdust samples from individual blocks were ground and analyzed for % 
nitrogen and % carbon content using an elemental analyzer (Costech, Valencia, CA, USA) (table 
S11). Average elemental % nitrogen and % carbon per source location were used to represent 
variation within and across wood species as wood chemistry typically is a strong predictor of 
decay rates (25, 26) (tables S6-10).  

Wood blocks were randomly selected from each treatment at each station for harvest at 
~6 months (n = 777, sites = 22), ~12 months (n = 4479, sites = 120), ~24 months (n = 3487, sites 
= 96), ~36 months (n = 125, sites = 10) and ~48 months (n = 54, sites = 10) after deployment. 
Once collected, wood blocks were assessed for termites. We determined termite discovery and 
decay following a two-step method. First, we filtered to those sites where site researchers 
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recorded termite presence. Second, for those sites with termites, we recorded blocks as 
discovered when they were noted as having termites, mudding (i.e., imported soil), and/or 
damage (e.g., internal chambering, external surface scoring, or removal) in wood blocks (fig. 
S3). When wood blocks were observed to be damaged, but this damage was not attributable to 
termites (e.g., small holes, non-termite larvae, etc.), these blocks were recorded as undiscovered 
by termites. Few blocks had macrofauna damage not attributable to termites (termite discovery 
was 2.3× higher than discovery by other macrofauna). One block was dropped from the study as 
we were unable to determine its termite discovery status. After termite discovery assessment, 
wood blocks were cleaned, separating out deadwood from imported soil, termites, fungal fruiting 
bodies, roots, etc. and dried at 100°C for 72 hrs before reweighing for final mass.  

Using site latitude and longitude, we obtained elevation (m) and climate variables from 
Fick and Hijmans (27), including both mean annual temperature (MAT; °C) and mean annual 
precipitation (MAP; mm) at 0.5° resolution; climate data were summarized over the window 
over which the blocks were deployed at field sites. We selected MAT and MAP to capture the 
broad climate envelope at our sites (as opposed limits such as minimum or maximum) as our 
goals were to examine climate sensitivities of wood-dwelling microbes and wood-feeding 
termites, which are typically compared under climate averages (e.g., Q10). Whittaker’s biomes 
were obtained from Ricklefs (24). We used “raster” (28) and “plotbiomes” (29) packages in R 
(v4.04) (30). 
Analyses Discovery - Termite discovery was calculated as the estimated percentage of wood 
blocks at all sites per year in the microbes+termites treatment that were noted as having termites. 
We ran two sets of two-tailed analyses to understand how wood block discovery by termites 
varied across geographic and climatic space. First, we ran a series of bivariate logistic 
regressions (using the glm function in R (30)), examining how individual spatial (Absolute 
(Latitude) and elevation) and climatic (MAT and MAP) predictors estimated discovery. Second, 
we ran a multivariate logistic regression (using the glm function in R (30)) including MAT, MAP 
and their interaction to estimate discovery. In both models, we estimated termite discovery at the 
block level using all wood blocks in the microbe+termite treatment (discovered or undiscovered) 
per site and used an offset for time since deployment to account for variation in deployment 
length. While no site occurred where P. radiata is native, 43 of the sites occurred where other 
Pinus spp. were native. To check that exposure to native species within the Pinus genus did not 
lead to increased decay rates, we included Pinus presence as a term in the multivariate models. 
Pinus presence was not a significant term in either model, and we excluded it from further 
analyses.  

Decay - We calculated proportion mass loss (ML) for a given time window = 1 - (Initial 
mass - Final mass/ (Initial mass * Time)). Microbial-driven (M) wood ML was calculated for 
blocks undiscovered by termites, while microbial and termite-driven (M+T) wood ML was 
calculated for blocks discovered by termites. Additionally, using all data, decay was calculated 
as average decay per discovery category at a site assuming an exponential steady-state of decay 
using percentage mass loss and time since deployment (i.e., k = -log (Final mass/Initial 
mass)/time). We averaged decay by discovery category and site and applied a natural-log 
transformation prior to analyses. Data were weighted such that those decay per discovery 
categories and sites with higher sample sizes (i.e., number of wood blocks) were given greater 
weight in the regression. Similar to the discovery models, we ran two sets of two-tailed analyses 
to understand how both termite undiscovered and discovered decay rates (ln(k)) varied across 
geographic and climatic space. First, we ran a series of bivariate regressions (using the lm 
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function in R (30)), examining how individual spatial (Absolute (Latitude) and elevation) and 
climatic (MAT and MAP) predictors estimated k for discovered and undiscovered wood 
categories. Second, we ran a multivariate regression including MAT, MAP and their interaction 
(using the lm function in R (30)) to estimate decay for each discovered and undiscovered wood 
category. We also ran a third analysis to confirm the relationship between the magnitude of 
discovery and decay. For this analysis, we confirmed that decay rates increased with more 
frequent discovery by termites in a biome-specific fashion (Fig. S4) by regressing decay rates 
against the percentage of wood blocks discovered at each site, the biome associated with each 
site and the interaction between discovery and biome (using the lm and Anova functions in R 
(30)). In discovery and decay models, when we included initial wood % nitrogen and % carbon 
to account for pine species, both variables were significant but otherwise had little effect on 
models (tables S6-10); weak effects of latitude and precipitation became not significant in M 
(termite undiscovered) decay models (tables S2, 7). Holes in the mesh did not alter decay rates 
(e.g., due to altered microclimate) when we analyzed the effect of hole treatment (holes/no holes) 
using a two-tailed test for all blocks undiscovered by termites (main effect and all interactions 
involving that treatment P > 0.4). For analyses, we used the "lubridate" (31), "boot" (32), 
"report" (33), "see" (34), "correlation" (35), "modelbased" (36), "effectsize" (37), "parameters" 
(38), "performance" (39), "bayestestR" (40), "datawizard" (41), "insight" (42), "easystats" (43), 
"lme4" (44), "patchwork" (45), "ggeffects" (46), "forcats" (47), "stringr" (48), "dplyr" (49), 
"purrr" (50), "readr" (51), "tidyr" (52), "tibble" (53), "ggplot2" (54), "tidyverse" (55), “khroma” 
(56) and “car” (57) packages in R (v4.04) (30). 

Fixed- versus mixed-effects models - We assumed that geographic signatures in spatial 
and climate variables would already account for variation associated with “site”. Further, 
including “site” in models would make it difficult to estimate coefficients associated with 
climate variables; we modeled discovery and decay without explicitly accounting for multiple 
wood blocks and harvests associated with each “site”. To confirm that outcomes of statistical 
hypothesis tests were robust to this decision, we also fit mixed effects models (using lmer and 
glmer functions from "lme4" (44)) including each “site” as a random effect (Table S12). 
 Termite discovery land surface area estimations - To explore amount of land surface area 
potentially impacted by high termite discovery (assuming all else as equal, e.g., we did not 
model how climate change alters vegetation distributions, land surface area due to sea level rise, 
or termite or microbial decay rates), we first estimated from our model where high termite 
discovery (>50%) should be expected based on MAT and MAP macroclimate relationships from 
our data (Table S3). To bracket how climate change may lead to spatial shifts in termite 
discovery by mid-century, we estimated land area predicted to have high discovery by 2041-
2060 based on all available mid-century CMIP6 climate models for scenarios SSP 5-8.5 or SSP 
1-2.6 downscaled to 2.5 minute resolution and bias corrected using WorldClim v2.1 (27). 
Finally, we estimated percentage land area that has only rare termite discovery (<5%), currently 
has low and is not expected to have high discovery (>5% & <50%) and are warm sites (either 
now or in mid-century) that are drier or wetter than any sites in the current study by + 10%, 
meaning we were unable to predict termite discovery rates. Here, we focus on areas that 
currently have <50% discovery but are expected to expand to >50% discovery by mid-century. 
The 50% discovery threshold is arbitrary, but we selected it as it is both a biologically useful part 
of climate-termite discovery relationships and statistically robust. Focusing on a 50% threshold 
is analogous to common approaches in many other fields (e.g., median lethal dose, LD50). 
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Fig. S1.  
Termite discovery versus key spatial and climatic variables: (A) Elevation, (B) Absolute 
(Latitude), (C) Mean annual temperature (MAT), and (D) and Mean annual precipitation (MAP). 
We ran logistic regressions with individual spatial and climatic variables as predictors of 
probability of wood block discovery with an offset for time since deployment. The solid black 
line is the model best fit and dashed line is the 95% CI (table S1). Termite discovery was 
estimated at the block level using all wood blocks in the microbe+termite treatment (discovered 
or undiscovered) per site. Each circle represents the estimated percentage of wood blocks with 
evidence of termites per year at a site. Median termite discovery = 10%; 95th percentile = 82%. 
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Fig. S2.  
Microbe (termite undiscovered) and microbe + termite (termite discovered) decay (k) 
versus key spatial and climatic variables: (A) Elevation, (B) (Absolute) Latitude, (C) Mean 
annual temperature (MAT), and (D) and Mean annual precipitation (MAP). Note that the y-axis 
is ln-transformed but tick labels represent untransformed values for decay. We ran linear 
regressions with individual spatial and climatic variables as predictors of decay rates (k) 
separately for termite discovered and undiscovered wood categories. Blue lines denote termite 
undiscovered wood blocks and orange lines denote termite discovered wood blocks. The solid 
lines are the model best fit and dashed lines are the 95% CI (tables S2-3). There were no 
significant relationships between termite discovered decay and either (Absolute) Latitude (B) or 
MAP (D). Median termite undiscovered wood mass loss in two years = 11% (95th percentile = 
43%), and median estimated termite discovered wood mass loss in two years = 23% (95th 
percentile = 92%). 
 
  



Submitted Manuscript: Confidential 
Template revised February 2021 

6 
 

 

Fig. S3.  
Examples of decayed wood blocks. (A) Termite discovered wood from ‘Gingin’ (Western 
Australia) after 488 days of exposure. (B) Microbes wood undiscovered by termites from the 
same harvest as the pair of blocks shown in (A) for comparison. (C) Termite discovered wood 
from Australia savanna from the pilot study after 339 days of exposure. (D) The same block 
shown in C with wood (upper left) and imported soil (right). 
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Fig. S4. 
Relationship between discovery and decay (k) of wood blocks. Note that the y-axis is ln-
transformed but tick labels represent untransformed values for decay. Decay increased 
exponentially at sites as the percentage of wood blocks discovered by termites increased 
(ANOVAdiscovery: F1,119 = 77.1, P < 0.001), as shown by the black line (+/- 95% CI). The rate of 
increase differed among biomes (ANOVAdiscovery:biome: F5,119 = 3.5, P = 0.005), with the steepest 
slope for subtropical deserts and the shallowest slope for temperate rain forest. The analysis is 
limited to biomes for which there were at least six sites with termite discovery. 
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Table S1.  
Best fit bivariate models for termite discovery versus key spatial and climatic variables: 
Elevation, Absolute (Latitude), Mean annual temperature (MAT), and Mean annual precipitation 
(MAP), including Parameter (Par), Odds Ratio, SE, 95% CI, z-scores, P values and McFadden’s 
pseudo-R2, (DF = 4465, N = 4466). We ran logistic regressions with individual spatial and 
climatic variables as predictors of probability of wood block discovery with an offset for time 
since deployment.  Termite discovery was estimated at the block level using all wood blocks in 
the microbe+termite treatment (discovered or undiscovered) per site. Significant parameters are 
in bold.  

Par Odds Ratio SE 95% CI z P pseudo-R2 

Model      0.229 

Intercept 0.62 0.05  (0.53, 0.72) -6.34 < 0.001  

Absolute 
Latitude 0.91 2.82E-03  (0.90, 0.92) -30.32 < 0.001  

Model      0.007 

Intercept 0.08 4.10E-03  (0.07, 0.09) -48.02 < 0.001  

Elevation 1 5.11E-05  (1.00, 1.00) -5.99 < 0.001  

Model      0.290 

Intercept 5.48E-04 9.38E-05  (0, 0) -43.88 < 0.001  

MAT 1.31 0.01  (1.29, 1.34) 31.64 < 0.001  

Model      0.063 

Intercept 0.02 1.43E-03  (0.01, 0.02) -48.18 < 0.001  

MAP 1 5.04E-05  (1.00, 1.00) 18.06 < 0.001  
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Table S2.  
Best fit bivariate models for decay (ln(k)) versus key spatial and climatic variables: 
Elevation, Absolute (Latitude), Mean annual temperature (MAT), and Mean annual precipitation 
(MAP), including Termite discovery (Dis; Termite undiscovered wood blocks (M), Termite 
discovered wood blocks (M+T)), Parameter (Par), Coefficient (Coef), SE, 95% CI, z-score, P 
values and Adjusted-R2 (DF = 221, N = 225). We ran linear regressions with individual spatial 
and climatic variables as predictors of decay rates (k) separately for termite discovered and 
undiscovered wood categories. Decay was estimated as the exponential rate of decay per year 
and was averaged by site and natural-log transformed prior to analysis. Significant parameters 
are in bold. 

Dis Par Coef SE 95% CI t df P R2 (Adj) 

Model        0.021 

M+T Intercept -1.51 0.25  (-1.99, -1.02) -6.12 91 < 0.001  

 Latitude -0.02 9.87E-03  (-0.04, 0) -1.73 91 0.087  

Model        0.060 

M Intercept -2.38 0.14  (-2.64, -2.11) -17.48 130 < 0.001  

 Latitude -0.01 4.54E-03  (-0.02, 0) -3.07 130 0.003  

Model        0.253 

M+T Intercept -1.19 0.17  (-1.53, -0.85) -7.01 91 < 0.001  

 Elevation -6.99E-04 1.23E-04  (0, 0) -5.67 91 < 0.001  

Model        0.128 

M Intercept -2.43 0.1  (-2.62, -2.24) -25.38 130 < 0.001  

 Elevation -3.35E-04 7.46E-05  (0, 0) -4.49 130 < 0.001  

Model        0.521 

M+T Intercept -4.7 0.3  (-5.29, -4.10) -15.7 91 < 0.001  

 MAT 0.16 0.02  (0.13, 0.20) 10.06 91 < 0.001  

Model        0.310 
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M Intercept -3.84 0.16  (-4.15, -3.53) -24.72 130 < 0.001  

 MAT 0.07 9.18E-03  (0.05, 0.09) 7.75 130 < 0.001  

Model        -0.010 

M+T Intercept -1.93 0.33  (-2.58, -1.28) -5.86 91 < 0.001  

 MAP 5.07E-05 2.01E-04  (0, 0) 0.25 91 0.801  

Model        0.045 

M Intercept -3.1 0.16  (-3.41, -2.80) -19.95 130 < 0.001  

 MAP 2.72E-04 1.01E-04 
 (<-0.0001, 
<0.0001) 2.69 130 0.008  
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Table S3.  
Best fit multivariate model for probability of termite discovery versus climatic sensitivities: 
Mean annual temperature (MAT) and Mean annual precipitation (MAP), including Parameter 
(Par), Odds Ratio, SE, 95% CI, z-scores, P values (McFadden’s pseudo-R2 = 0.31, DF = 4462, N 
= 4466). We ran a multivariate logistic binomial regression including MAT, MAP and their 
interaction as predictors of probability of wood block discovery with an offset for time since 
deployment. Termite discovery was estimated at the block level using all wood blocks in the 
microbe+termite treatment (discovered or undiscovered) per site. Significant parameters are in 
bold. 

Par 
Odds 
Ratio SE 95% CI z P 

Intercept 6.32E-06 2.94E-06  (2.52E-06, 1.56E-05) -25.76 < 0.001 

MAP 1 3.13E-04  (1.00, 1.00) 10.73 < 0.001 

MAT 1.67 0.04  (1.59, 1.75) 21.21 < 0.001 

MAP × MAT 1 1.52E-05  (1.00, 1.00) -11.17 < 0.001 
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Table S4.  
Best fit multivariate model for microbe (termite undiscovered) wood decay (ln(k)) versus 
climatic sensitivities: Mean annual temperature (MAT) and Mean annual precipitation (MAP), 
including Parameter (Par), Coefficient (Coef), SE, t-values and P values (R2 = 0.214, DF = 128, 
N = 132). We ran a multivariate linear regression including MAT, MAP and their interaction for 
the undiscovered wood category. Significant parameters are in bold. Decay was estimated as the 
exponential rate of decay per year and was averaged by site and natural-log transformed prior to 
analysis.  

Par Coef SE t P 

Intercept -4.38 0.48 -9.12 < 0.001 

MAT 0.09 0.03 3.18  0.002 

MAP 0.73 0.40 1.82 0.072 

MAT × MAP -0.03 0.02 -1.55 0.124 
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Table S5.  
Best fit multivariate model for microbe + termite (termite discovered) wood decay (ln(k)) 
versus climatic sensitivities: Mean annual temperature (MAT) and Mean annual precipitation 
(MAP), including Parameter (Par), Coefficient (Coef), SE, t-values and P values (R2 = 0.69, DF 
= 89, N = 93) We ran a multivariate linear regression including MAT, MAP and their interaction 
for the discovered wood category. Significant parameters are in bold. Decay was estimated per 
year, averaged by site and natural-log transformed prior to analyses. 

Par Coef SE t P 

Intercept -4.97 0.78 -6.35 < 0.001 

MAT 0.24 0.04 6.12 < 0.001 

MAP -0.55 0.49 -1.13 0.260 

MAT × MAP -0.007 0.02 -0.31 0.755 
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Table S6.  
Best fit bivariate models for termite discovery versus key spatial and climatic variables and 
wood chemistry: Mean annual temperature (MAT), Mean annual precipitation (MAP), % 
nitrogen (%N) and % carbon (%C), including Parameter (Par), Odds Ratio, SE, 95% CI, z-
scores, P values and McFadden’s pseudo-R2, (DF = 4465, N = 4466). We ran logistic regressions 
with individual spatial and climatic variables, as well as %N and %C, as predictors of probability 
of block discovery with an offset for time since deployment. Termite discovery was estimated at 
the block level using all wood blocks in the microbe+termite treatment (discovered or 
undiscovered) per site. Significant parameters are in bold. 

Par Odds Ratio SE 95% CI z P 
pseudo-

R2 

Model       

Intercept 7.00E-28 2.26E-27  (0, 0) -19.39 < 0.001 0.311 
Absolute 
Latitude 0.93 3.13E-03  (0.92, 0.94) -21.62 < 0.001  

%N 1.77E+09 2.46E+09  (1.18E+08, 2.76E+10) 15.31 < 0.001  

%C 3.28 0.20  (2.91, 3.71) 19.09 < 0.001  

Model       

Intercept 4.18E-42 1.35E-41  (0, 0) -29.45 < 0.001 0.215 

Elevation 1 5.86E-05  (1.00, 1.00) 4.08 < 0.001  

%N 2.73E+14 3.98E+14  (1.61E+13, 4.86E+15) 22.82 < 0.001  

%C 5.91 0.37  (5.24, 6.69) 28.52 < 0.001  

Model       

Intercept 1.20E-20 4.08E-20  (0, 0) -13.43 < 0.001 0.318 

MAT 1.23 0.01  (1.21, 1.26) 21.32 < 0.001  

%N 1.91E+06 2.93E+06 
 (9.754E+04, 
3.96E+07) 9.44 < 0.001  

%C 2.14 0.14  (1.87, 2.44) 11.20 < 0.001  

Model       

Intercept 2.08E-38 6.37E-38  (0, 0) -28.29 < 0.001 0.223 
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MAP 1 6.44E-05  (1.00, 1.00) 7.57 < 0.001  

%N 1.80E+12 2.75E+12  (9.29E+10, 3.71E+13) 18.47 < 0.001  

%C 5.01 0.30  (4.46, 5.63) 27.21 < 0.001  
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Table S7.  
Best fit bivariate models for decay (ln(k)) versus key spatial versus climatic variables and 
wood chemistry: Elevation, Absolute (Latitude), Mean annual temperature (MAT), Mean 
annual precipitation (MAP), % nitrogen (%N) and % carbon (%C), including Termite discovery 
(Dis; Termite undiscovered wood blocks (M), Termite discovered wood blocks (M+T)), 
Parameter (Par), Coefficient (Coef), SE, 95% CI, z-score, P values and Adjusted-R2 (DF = 217, 
N = 225). We ran linear regressions with individual spatial and climatic variables, as well as %N 
and %C, as predictors of decay rates (k) separately for termite discovered and undiscovered 
wood categories. Decay was estimated as the exponential rate of decay per year and was 
averaged by site and natural-log transformed prior to analysis. Significant parameters are in bold. 

Dis Par Coef SE 95% CI t df P R2 (Adj) 

Model         

M+T Intercept  -52.33 7.11  (-66.45, -38.21)  -7.36 89  < 0.001  0.368 

 Absolute Latitude  3.03E-03 8.46E-03  (-0.01, 0.02)  0.36 89 0.721  

 %N 13.51 2.93  (7.68, 19.34)  4.6 89  < 0.001   

 %C 0.99 0.14  (0.71, 1.26)  7.08 89  < 0.001   

Model         

M Intercept  -28.51 4.51  (-37.43, -19.59)  -6.32 128  < 0.001  0.251 

 Absolute Latitude  -3.17E-03 4.45E-03  (-0.01, 0.01)  -0.71 128 0.478  

 %N 9.19 1.87  (5.48, 12.89)  4.9 128  < 0.001   

 %C 0.5 0.09  (0.33, 0.67)  5.71 128  < 0.001   

Model         

M+T Intercept  -40.67 7.13  (-54.83, -26.50)  -5.7 89  < 0.001  0.435 

 Elevation  -3.94E-04 1.20E-04  (0, 0)  -3.28 89 0.001  

 %N 10.47 2.78  (4.95, 15.99)  3.77 89  < 0.001   

 %C 0.77 0.14  (0.49, 1.04)  5.47 89  < 0.001   

Model         

M Intercept  -25.71 4.24  (-34.09, -17.33)  -6.07 128  < 0.001  0.291 
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 Elevation  -1.99E-04 7.16E-05  (0, 0)  -2.78 128 0.006  

 %N 8.38 1.79  (4.85, 11.92)  4.69 128  < 0.001   

 %C 0.45 0.08  (0.28, 0.61)  5.4 128  < 0.001   

Model         

M+T Intercept  -24.08 7.18  (-38.35, -9.82)  -3.35 89 0.001 0.555 

 MAT 0.13 0.02  (0.09, 0.17)  6.12 89  < 0.001   

 %N 2.76 2.91  (-3.01, 8.54)  0.95 89 0.344  

 %C 0.4 0.15  (0.11, 0.69)  2.76 89 0.007  

Model         

M Intercept  -17.93 4.66  (-27.15, -8.71)  -3.85 128  < 0.001  0.348 

 MAT 0.05 0.01  (0.03, 0.07)  4.43 128  < 0.001   

 %N 5.16 1.94  (1.32, 9.00)  2.66 128 0.009  

 %C 0.28 0.09  (0.09, 0.46)  2.99 128 0.003  

Model         

M+T Intercept  -52.64 6.62  (-65.80, -39.48)  -7.95 89  < 0.001  0.387 

 MAP -3.52E-04 2.06E-04  (0, 0)  -1.71 89 0.091  

 %N 17 3.55  (9.96, 24.05)  4.79 89  < 0.001   

 %C 0.99 0.13  (0.73, 1.25)  7.55 89  < 0.001   

Model         

M Intercept  -28.92 4.18  (-37.19, -20.64)  -6.92 128  < 0.001  0.254 

 MAP 9.76E-05 9.87E-05  (0, 0)  0.99 128 0.325  

 %N 8.79 1.96  (4.92, 12.66)  4.49 128  < 0.001   

 %C 0.5 0.08  (0.34, 0.67)  6.14 128  < 0.001   
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Table S8.  
Best fit multivariate model for probability of termite discovery versus climatic sensitivities 
and wood chemistry: Mean annual temperature (MAT), Mean annual precipitation (MAP), % 
nitrogen (%N) and % carbon (%C) including Parameter (Par), Odds Ratio, SE, 95% CI, z-scores, 
P values (McFadden’s pseudo-R2 = 0.34, DF = 4460, N = 4466). We ran a multivariate logistic 
binomial regression including MAT, MAP and their interaction, as well as %N and %C, as 
predictors of probability of block discovery with an offset for time since deployment. Termite 
discovery was estimated at the block level using all wood blocks in the microbe+termite 
treatment (discovered or undiscovered) per site. Significant parameters are in bold. 

Par Odds Ratio   SE 95% CI z P  

Intercept  9.25E-21 2.93E-20  (1.77E-23, 4.35E-18)  -14.57  < 0.001  

MAP 1 3.14E-04  (1.00, 1.00)  10.95  < 0.001  

MAT 1.59 0.04  (1.51, 1.67)  18.26  < 0.001  

%N 1.20E+06 1.68E+06  (7.89E+04, 1.93E+07)  9.98  < 0.001  

%C 1.95 0.12  (1.73, 2.21)  10.58  < 0.001  

MAP × 
MAT  1 1.55E-05  (1.00, 1.00)  -11.4  < 0.001  
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Table S9.  
Best fit multivariate model for microbe (termite undiscovered) wood decay (ln(k)) versus 
climatic sensitivities and wood chemistry: Mean annual temperature (MAT), Mean annual 
precipitation (MAP), % nitrogen (%N) and % carbon (%C), including Parameter (Par), 
Coefficient (Coef), SE, t-values and P values (R2 = 0.245, DF = 126, N = 132). We ran a 
multivariate linear regression including MAT, MAP and their interaction, as well as %N and 
%C, for the undiscovered wood category. Decay was estimated as the exponential rate of decay 
per year and was averaged by site and natural-log transformed prior to analysis. Significant 
parameters are in bold. 

Par Coef SE t P 

Intercept -17.08 5.26 -3.25 0.002 

MAT  0.07 0.03 2.58 0.011 

MAP 0.68 0.4 1.71 0.09 

%N 5.84 2.2 2.65 0.009 

%C 0.25 0.1 2.35 0.021 

MAT × MAP  -0.03 0.02 -1.5 0.136 
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Table S10.  
Best fit multivariate model for microbe + termite (termite discovered) wood decay (ln(k)) 
versus climatic sensitivities and wood chemistry: Mean annual temperature (MAT), Mean 
annual precipitation (MAP), % nitrogen (%N) and % carbon (%C), including Parameter (Par), 
Coefficient (Coef), SE, t-values and P values (R2 = 0.70, DF = 87, N = 93). We ran a multivariate 
linear regression including MAT, MAP and their interaction, as well as %N and %C, for the 
discovered wood category. Decay was estimated as the exponential rate of decay per year and 
was averaged by site and natural-log transformed prior to analysis. Significant parameters are in 
bold. 

Par Coef SE t P 

Intercept -14.42 5.03 -2.87 0.005 

MAT  0.24 0.04 6.23  < 0.001 

MAP -0.43 0.51 -0.84 0.405 

%N 5.17 2.31 2.24 0.028 

%C 0.18 0.1 1.8 0.075 

MAT × MAP  -0.02 0.02 -0.85 0.400 
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Table S11.  
Description of study sites. Information on each site is provided including location (country, 
subregion, biome, latitude, longitude), attributes of deployed blocks (date of deployment, type of 
wood used, initial nitrogen and carbon concentrations) and attributes of harvested blocks 
(number of days exposed, number of blocks harvested, percent discovered by termites, average 
and standard deviation [SD] for the decay constant [k] associated with microbial decay or 
combined termite + microbial decay [NA values indicate that decay class was not observed for 
that harvest]). 
 
(see separate .csv file)  
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Table S12.  
Comparison of fixed-effects and mixed-effects models. Summary of differing statistical 
hypothesis test outcomes, where present, of models that include only fixed-effects parameters 
and those that also include site-level random effects. Parameter estimates of all fixed-effects 
models are presented in Tables S1-S10. To compare parameter estimates across each pair of 
models, see “MEmodelcomp.html” at the project repository 
(https://doi.org/10.5281/zenodo.6804781). 
 
Location of table where 
model(s) presented 

Differences observed between fixed- and mixed-effects 
models, where present 

Table S1 Elevation is nonsignificant in the mixed-effects model. 
Consistent outcomes observed for all of the other three 
models. 

Table S2 Consistent outcomes observed for all eight models. 

Table S3 Consistent outcomes observed. 

Table S4 Consistent outcomes observed. 

Table S5 Consistent outcomes observed. 

Table S6 Consistent outcomes observed for all four models. 

Table S7 Consistent outcomes observed for all eight models. 

Table S8 Consistent outcomes observed. 

Table S9 Consistent outcomes observed. 

Table S10 %C is marginally significant in the mixed-effects model. 
Consistent outcomes observed for all other parameters. 

 
 
 
 


