922 research outputs found

    Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs

    Get PDF
    At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H2_{2}O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 μm\rm \mu m) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&

    Uncertainties in water chemistry in disks: An application to TW Hya

    Get PDF
    Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims. The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods. ... (abbreviated) Results. We report new line detections of p-H2O (3_22-2_11) at 89.99 micron and CO J=18-17 at 144.78 micron for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([OI], [CII]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [OI] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions. Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide access to the various gas phase water reservoirs (inside and outside the snow line) in protoplanetary disks and thus provide important information on where gas-phase water is potentially located. Experimental and/or theoretical collision rates for H2O with atomic hydrogen are needed to diminish uncertainties from water line radiative transfer.Comment: accepted for publication in A&

    Herschel evidence for disk flattening or gas depletion in transitional disks

    Get PDF
    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [OI] 63 micron for 21 transitional disks. Our survey complements the larger Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by quadrupling the number of transitional disks observed with PACS at this wavelength. [OI] 63 micron traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [OI] 63 micron line luminosities two times fainter than their full disk counterparts. We self consistently determine various stellar properties (e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we find no correlations that can explain the lower [OI] 63 micron line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.Comment: Accepted for publication in ApJ; 52 pages, 16 figures, 8 table

    Evolution of Young Brown Dwarf Disks in the Mid-Infrared

    Full text link
    We have imaged two bona-fide brown dwarfs with TReCS/GEMINI-S and find mid-infrared excess emission that can be explained by optically thick dust disk models. In the case of the young (\approx2Myr) Cha Hα\alpha1 we measure fluxes at 10.4μ\mum and 12.3μ\mum that are fully consistent with a standard flared disk model and prominent silicate emission. For the \approx 10Myr old brown dwarf 2MASS1207-3932 located in the TW Hydrae association we find excess emission at 8.7μ\mum and 10.4μ\mum with respect to its photosphere, and confirm disk accretion as likely cause of its strong activity. Disks around brown dwarfs likely last at least as long as their low-mass stellar counterparts in the T-Tauri phase. Grain growth, dust settling, and evolution of the geometry of brown dwarfs disks may appear on a timescale of 10Myr and can be witnessed by observations in the mid-infrared.Comment: 6 pages, 4 figure

    Warm gas at 50 AU in the disk around Herbig Be star HD 100546

    Full text link
    The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm gas in a disk is usually dominated by the emission from an inner disk. Our goal is to detect the warm gas in the disk atmosphere well beyond 10 AU from a central star in a nearby disk system of the Herbig Be star HD 100546. We measured the excitation temperature of the vibrational transition of CO at incremental radii of the disk from the central star up to 50 AU, using an adaptive optics system combined with the high-resolution infrared spectrograph CRIRES at the VLT. The observation successfully resolved the line emission with 0".1 angular resolution, which is 10 AU at the distance of HD 100546. Population diagrams were constructed at each location of the disk, and compared with the models calculated taking into account the optical depth effect in LTE condition. The excitation temperature of CO is 400-500 K or higher at 50 AU away from the star, where the blackbody temperature in equilibrium with the stellar radiation drops as low as 90 K. This is unambiguous evidence of a warm disk atmosphere far away from the central star.Comment: 7 pages, 5 figures, A&A in pres

    Childhood predictors and adult life success of adolescent delinquency abstainers

    Get PDF
    While much is known about adolescent delinquency, considerably less attention has been given to adolescent delinquency abstention. Understanding how or why some adolescents manage to abstain from delinquency during adolescence is informative for understanding and preventing adolescent (minor) delinquency. Using data from the Cambridge Study in Delinquent Development (N = 411 males) to compare abstainers, self-report delinquents and convicted delinquents we found five childhood factors (ages 8-10) that predicted adolescent abstention (ages 10-18). First, we find that adolescent abstainers possess characteristics opposite to those of convicted delinquents (namely, abstainers are high on honesty, conformity and family income). However, we also found that abstainers also share some childhood characteristics with convicted delinquents (namely, low popularity and low school achievement). A latent class analysis indicated that the mixed factors predicting abstention can be accounted for by two groups of abstainers: an adaptive group characterized by high honesty, and a maladaptive group characterized by low popularity and low school achievement. Further, validation of these two types of abstainers using data collected at age 48 suggested that adaptive abstainers outperform all other adolescents in general life success, whereas maladaptive abstainers only fare better than delinquent adolescents in terms of lower substance use and delinquency later in life

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Exocomet signatures around the A-shell star Φ\Phi Leo?

    Get PDF
    We present an intensive monitoring of high-resolution spectra of the Ca {\sc ii} K line in the A7IV shell star Φ\Phi Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star β\beta Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around Φ\Phi Leo. To our knowledge, with the exception of β\beta Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that Φ\Phi Leo presents the richest environment with comet-like events known to date, second only to β\beta Pic.Comment: A&A letters, proof-correcte

    The structure of the protoplanetary disk surrounding three young intermediate mass stars. II. Spatially resolved dust and gas distribution

    Get PDF
    [Abridged] We present the first direct comparison of the distribution of the gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10 micron emission, in the protoplanetary disk around three intermediate-mass stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained with VLTI/MIDI. Simple geometrical models are used to compare the dust emission to high-resolution optical spectra in the 6300 AA [OI] line of the same targets. The disks around HD 101412 and HD 135344 B appear strongly flared in the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10 micron emission is rather compact (< 2 AU) while the [OI] brightness profile shows a double peaked structure. The inner peak is strongest and is consistent with the location of the dust, the outer peak is fainter and is located at 5-10 AU. Spatially extended PAH emission is found in both disks. The disk around HD 179218 is flared in the dust. The 10 micron emission emerges from a double ring-like structure with the first ring peaking at ~ 1 AU and the second at ~ 20 AU. No dust emission is detected between ~ 3 -- 15 AU. The oxygen emission seems also to come from a flared structure, however, the bulk of this emission is produced between ~ 1 -- 10 AU. This could indicate a lack of gas in the outer disk or could be due to chemical effects which reduce the abundance of OH -- the parent molecule of the observed [OI] emission -- further away from the star. The three systems, HD 179218, HD 135344 B and HD 101412, may form an evolutionary sequence: the disk initially flared becomes flat under the combined action of gas-dust decoupling, grain growth and dust settling.Comment: Accepted for publication in A&

    DZ Cha: a bona fide photoevaporating disc

    Full text link
    DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Combining our analysis with previous studies we find no signatures of accretion in the \Ha line profile in nine epochs covering a time baseline of 20\sim20 years. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300A˚\,\AA that indicate a disc outflow. The polarized images reveal a dust depleted cavity of 7\sim7 au in radius and two spiral-like features, and we derive a disc dust mass limit of M_\mathrm{dust} 80 \MJup) companions are detected down to 0\farcs07 (8\sim 8 au, projected). The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (105\lesssim 10^5 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation.Comment: A&A in press, language corrections include
    corecore