At early stages of stellar evolution young stars show powerful jets and/or
outflows that interact with protoplanetary discs and their surroundings.
Despite the scarce knowledge about the interaction of jets and/or outflows with
discs, spectroscopic studies based on Herschel and ISO data suggests that gas
shocked by jets and/or outflows can be traced by far-IR (FIR) emission in
certain sources. We want to provide a consistent catalogue of selected atomic
([OI] and [CII]) and molecular (CO, OH, and H2O) line fluxes observed in
the FIR, separate and characterize the contribution from the jet and the disc
to the observed line emission, and place the observations in an evolutionary
picture. The atomic and molecular FIR (60-190 μm) line emission of
protoplanetary discs around 76 T Tauri stars located in Taurus are analysed.
The observations were carried out within the Herschel key programme Gas in
Protoplanetary Systems (GASPS). The spectra were obtained with the
Photodetector Array Camera and Spectrometer (PACS). The sample is first divided
in outflow and non-outflow sources according to literature tabulations. With
the aid of archival stellar/disc and jet/outflow tracers and model predictions
(PDRs and shocks), correlations are explored to constrain the physical
mechanisms behind the observed line emission. The much higher detection rate of
emission lines in outflow sources and the compatibility of line ratios with
shock model predictions supports the idea of a dominant contribution from the
jet/outflow to the line emission, in particular at earlier stages of the
stellar evolution as the brightness of FIR lines depends in large part on the
specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&