20 research outputs found

    ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma

    Get PDF
    Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Oral Abstracts 7: RA ClinicalO37. Long-Term Outcomes of Early RA Patients Initiated with Adalimumab Plus Methotrexate Compared with Methotrexate Alone Following a Targeted Treatment Approach

    Get PDF
    Background: This analysis assessed, on a group level, whether there is a long-term advantage for early RA patients treated with adalimumab (ADA) + MTX vs those initially treated with placebo (PBO) + MTX who either responded to therapy or added ADA following inadequate response (IR). Methods: OPTIMA was a 78- week, randomized, controlled trial of ADA + MTX vs PBO + MTX in MTX-naïve early (<1 year) RA patients. Therapy was adjusted at week 26: ADA + MTX-responders (R) who achieved DAS28 (CRP) <3.2 at weeks 22 and 26 (Period 1, P1) were re-randomized to withdraw or continue ADA and PBO + MTX-R continued randomized therapy for 52 weeks (P2); IR-patients received open-label (OL) ADA + MTX during P2. This post hoc analysis evaluated the proportion of patients at week 78 with DAS28 (CRP) <3.2, HAQ-DI <0.5, and/or ΔmTSS ≤0.5 by initial treatment. To account for patients who withdrew ADA during P2, an equivalent proportion of R was imputed from ADA + MTX-R patients. Results: At week 26, significantly more patients had low disease activity, normal function, and/or no radiographic progression with ADA + MTX vs PBO + MTX (Table 1). Differences in clinical and functional outcomes disappeared following additional treatment, when PBO + MTX-IR (n = 348/460) switched to OL ADA + MTX. Addition of OL ADA slowed radiographic progression, but more patients who received ADA + MTX from baseline had no radiographic progression at week 78 than patients who received initial PBO + MTX. Conclusions: Early RA patients treated with PBO + MTX achieved comparable long-term clinical and functional outcomes on a group level as those who began ADA + MTX, but only when therapy was optimized by the addition of ADA in PBO + MTX-IR. Still, ADA + MTX therapy conferred a radiographic benefit although the difference did not appear to translate to an additional functional benefit. Disclosures: P.E., AbbVie, Merck, Pfizer, UCB, Roche, BMS—Provided Expert Advice, Undertaken Trials, AbbVie—AbbVie sponsored the study, contributed to its design, and participated in the collection, analysis, and interpretation of the data, and in the writing, reviewing, and approval of the final version. R.F., AbbVie, Pfizer, Merck, Roche, UCB, Celgene, Amgen, AstraZeneca, BMS, Janssen, Lilly, Novartis—Research Grants, Consultation Fees. S.F., AbbVie—Employee, Stocks. A.K., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, Pfizer, Roche, UCB—Research Grants, Consultation Fees. H.K., AbbVie—Employee, Stocks. S.R., AbbVie—Employee, Stocks. J.S., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, GlaxoSmithKline, Lilly, Pfizer (Wyeth), MSD (Schering-Plough), Novo-Nordisk, Roche, Sandoz, UCB—Research Grants, Consultation Fees. R.V., AbbVie, BMS, GlaxoSmithKline, Human Genome Sciences, Merck, Pfizer, Roche, UCB Pharma—Consultation Fees, Research Support. Table 1.Week 78 clinical, functional, and radiographic outcomes in patients who received continued ADA + MTX vs those who continued PBO + MTX or added open-label ADA following an inadequate response ADA + MTX, n/N (%)a PBO + MTX, n/N (%)b Outcome Week 26 Week 52 Week 78 Week 26 Week 52 Week 78 DAS28 (CRP) <3.2 246/466 (53) 304/465 (65) 303/465 (65) 139/460 (30)*** 284/460 (62) 300/460 (65) HAQ-DI <0.5 211/466 (45) 220/466 (47) 224/466 (48) 150/460 (33)*** 203/460 (44) 208/460 (45) ΔmTSS ≤0.5 402/462 (87) 379/445 (86) 382/443 (86) 330/459 (72)*** 318/440 (72)*** 318/440 (72)*** DAS28 (CRP) <3.2 + ΔmTSS ≤0.5 216/462 (47) 260/443 (59) 266/443 (60) 112/459 (24)*** 196/440 (45) 211/440 (48)*** DAS28 (CRP) <3.2 + HAQ-DI <0.5 + ΔmTSS ≤0.5 146/462 (32) 168/443 (38) 174/443 (39) 82/459 (18)*** 120/440 (27)*** 135/440 (31)** aIncludes patients from the ADA Continuation (n = 105) and OL ADA Carry On (n = 259) arms, as well as the proportional equivalent number of responders from the ADA Withdrawal arm (n = 102). bIncludes patients from the MTX Continuation (n = 112) and Rescue ADA (n = 348) arms. Last observation carried forward: DAS28 (CRP) and HAQ-DI; Multiple imputations: ΔmTSS. ***P < 0.001 and **iP < 0.01, respectively, for differences between initial treatments from chi-squar

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer's disease

    No full text
    Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid β (Aβ) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aβ-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aβ content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aβ burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aβ, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aβ and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aβ formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aβ-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aβ burden. Our findings support a model in which Aβ-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aβ concentration or plaque density

    A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism

    No full text
    Ceramides are signalling molecules that regulate several physiological functions including insulin sensitivity. Here the authors report a selective ceramide synthase 1 inhibitor that counteracts lipid accumulation within the muscle and adiposity by increasing fatty acid oxidation but without affecting insulin sensitivity in mice fed with an obesogenic diet

    ONC201 in Combination with Paxalisib for the Treatment of H3K27-Altered Diffuse Midline Glioma

    No full text
    Abstract Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9 to 11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA mutations showed increased sensitivity to ONC201, whereas those harboring TP53 mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992. Significance: PI3K/Akt signaling promotes metabolic adaptation to ONC201-mediated disruption of mitochondrial energy homeostasis in diffuse intrinsic pontine glioma, highlighting the utility of a combination treatment strategy using ONC201 and the PI3K/Akt inhibitor paxalisib
    corecore