50 research outputs found

    Prolonging life and delaying death: The role of physicians in the context of limited intensive care resources

    Get PDF
    Critical care is in an emerging crisis of conflict between what individuals expect and the economic burden society and government are prepared to provide. The goal of critical care support is to prevent suffering and premature death by intensive therapy of reversible illnesses within a reasonable timeframe. Recently, it has become apparent that early support in an intensive care environment can improve patient outcomes. However, life support technology has advanced, allowing physicians to prolong life (and postpone death) in circumstances that were not possible in the recent past. This has been recognized by not only the medical community, but also by society at large. One corollary may be that expectations for recovery from critical illness have also become extremely high. In addition, greater numbers of patients are dying in intensive care units after having receiving prolonged durations of life-sustaining therapy. Herein lies the emerging crisis – critical care therapy must be available in a timely fashion for those who require it urgently, yet its provision is largely dependent on a finite availability of both capital and human resources. Physicians are often placed in a troubling conflict of interest by pressures to use health resources prudently while also promoting the equitable and timely access to critical care therapy. In this commentary, these issues are broadly discussed from the perspective of the individual clinician as well as that of society as a whole. The intent is to generate dialogue on the dynamic between individual clinicians navigating the complexities of how and when to use critical care support in the context of end-of-life issues, the increasing demands placed on finite critical care capacity, and the reasonable expectations of society

    Frailty in the critically ill: a novel concept

    Get PDF
    The concept of frailty has been defined as a multidimensional syndrome characterized by the loss of physical and cognitive reserve that predisposes to the accumulation of deficits and increased vulnerability to adverse events. Frailty is strongly correlated with age, and overlaps with and extends aspects of a patient's disability status (that is, functional limitation) and/or burden of comorbid disease. The frail phenotype has more specifically been characterized by adverse changes to a patient's mobility, muscle mass, nutritional status, strength and endurance. We contend that, in selected circumstances, the critically ill patient may be analogous to the frail geriatric patient. The prevalence of frailty amongst critically ill patients is currently unknown; however, it is probably increasing, based on data showing that the utilization of intensive care unit (ICU) resources by older people is rising. Owing to the theoretical similarities in frailty between geriatric and critically ill patients, this concept may have clinical relevance and may be predictive of outcomes, along with showing important interaction with several factors including illness severity, comorbid disease, and the social and structural environment. We believe studies of frailty in critically ill patients are needed to evaluate how it correlates with outcomes such as survival and quality of life, and how it relates to resource utilization, such as length of mechanical ventilation, ICU stay and duration of hospitalization. We hypothesize that the objective measurement of frailty may provide additional support and reinforcement to clinicians confronted with end-of-life decisions on the appropriateness of ICU support and/or withholding of life-sustaining therapies

    Clinical deterioration during antituberculosis treatment in Africa: Incidence, causes and risk factors

    Get PDF
    BACKGROUND:HIV-1 and Mycobacterium tuberculosis cause substantial morbidity and mortality. Despite the availability of antiretroviral and antituberculosis treatment in Africa, clinical deterioration during antituberculosis treatment remains a frequent reason for hospital admission. We therefore determined the incidence, causes and risk factors for clinical deterioration. METHODS: Prospective cohort study of 292 adults who initiated antituberculosis treatment during a 3-month period. We evaluated those with clinical deterioration over the following 24 weeks of treatment. RESULTS: Seventy-one percent (209/292) of patients were HIV-1 infected (median CD4+: 129 cells/muL [IQR:62-277]). At tuberculosis diagnosis, 23% (34/145) of HIV-1 infected patients qualifying for antiretroviral treatment (ART) were receiving ART; 6 months later, 75% (109/145) had received ART. Within 24 weeks of initiating antituberculosis treatment, 40% (117/292) of patients experienced clinical deterioration due to co-morbid illness (n = 70), tuberculosis related illness (n = 47), non AIDS-defining HIV-1 related infection (n = 25) and AIDS-defining illness (n = 21). Using HIV-1 uninfected patients as the referent group, HIV-1 infected patients had an increasing risk of clinical deterioration as CD4+ counts decreased [CD4+>350 cells/muL: RR = 1.4, 95% CI = 0.7-2.9; CD4+:200-350 cells/muL: RR = 2.0, 95% CI = 1.1-3.6; CD4+<200 cells/muL: RR = 3.0, 95% CI = 1.9-4.7]. During follow-up, 26% (30/117) of patients with clinical deterioration required hospital admission and 15% (17/117) died. Fifteen deaths were in HIV-1 infected patients with a CD4+<200 cells/muL. CONCLUSIONS: In multivariate analysis, HIV-1 infection and a low CD4+ count at tuberculosis diagnosis were significant risk factors for clinical deterioration and death. The initiation of ART at a CD4+ count of <350 cells/muL will likely reduce the high burden of clinical deterioration

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements

    The SAMI Galaxy Survey : spatially resolving the main sequence of star formation

    Get PDF
    We present the ∼800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O iii]/H β, [N ii]/H α, [S ii]/H α, and [O i]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.Publisher PDFPeer reviewe

    First demonstration of OH suppression in a high-efficiency near-infrared spectrograph

    Get PDF
    Ground-based near-infrared (NIR) astronomy is severely hampered by the forest of atmospheric emission lines resulting from the rovibrational decay of OH molecules in the upper atmosphere. The extreme brightness of these lines, as well as their spatial and temporal variability, makes accurate sky subtraction difficult. Selectively filtering these lines with OH suppression instruments has been a long standing goal for NIR spectroscopy. We have shown previously the efficacy of fibre Bragg gratings (FBGs) combined with photonic lanterns for achieving OH suppression. Here we report on PRAXIS, a unique NIR spectrograph that is optimized for OH suppression with FBGs. We show for the first time that OH suppression (of any kind) is possible with high overall throughput (18 per cent end-to-end), and provide examples of the relative benefits of OH suppression.The prototype of the PRAXIS instrument, GNOSIS, was funded under an ARC Federation Fellowship (FF0776384, PI: BlandHawthorn) and two ARC LIEF grants LE100100164 and LE120100199. PRAXIS was funded under an ARC Laureate Fellowship (FL140100278, PI: Bland-Hawthorn), and an ARC LIEF grant LE160100191. innoFSPEC acknowledges support from BMBF under grant no. 03Z2AN11

    Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr
    corecore