36 research outputs found

    Filling Gaps in Earthworm Digital Diversity in Northern Eurasia from Russian-language Literature

    Get PDF
    Data availability for certain groups of organisms (ecosystem engineers, invasive or protected species, etc.) is important for monitoring and making predictions in changing environments. One of the most promising directions for research on the impact of changes is species distribution modelling. Such technologies are highly dependent on occurrence data of high quality (Van Eupen et al. 2021). Earthworms (order Crassiclitellata) are a key group of organisms (Lavelle 2014), but their distribution around the globe is underrepresented in digital resources. Dozens of earthworm species, both widespread and endemic, inhabit the territory of Northern Eurasia (Perel 1979), but extremely poor data on them is available through global biodiversity repositories (Cameron 2018). There are two main obstacles to data mobilisation. Firstly, studies of the diversity of earthworms in Northen Eurasia have a long history (since the end of the nineteenth century) and were conducted by several generations of Soviet and Russian researchers. Most of the collected data have been published in "grey literature", now stored only in a few libraries. Until recently, most of these remained largely undigitised, and some are probably irretrievably lost. The second problem is the difference in the taxonomic checklists used by Soviet and European researchers. Not all species and synonyms are included in the GBIF (Global Biodiversity Information Facility) Backbone Taxonomy. As a result, existing earthworm species distribution models (Phillips 2019) potentially miss a significant amount of data and may underestimate biodiversity, and predict distributions inaccurately. To fill this gap, we collected occurrence data from the Russian language literature (published by Soviet and Russian researchers) and digitised species checklists, keeping the original scientific names.To find relevant literature, we conducted a keyword search for "earthworms" and "Lumbricidae" through the Russian national scientific online library eLibrary and screened reference lists from the monographs of leading Soviet and Russian soil zoologist Tamara Perel (Vsevolodova-Perel 1997, Perel 1979). As a result, about 1,000 references were collected, of which 330 papers had titles indicating the potential to contain data on earthworm occurrences. Among these, 219 were found as PDF files or printed papers. For dataset compilation, 159 papers were used; the others had no exact location data or duplicated data contained in other papers. Most of the sources were peer-reviewed articles (Table 1). A reference list is available through Zenodo (Ivanova et al. 2023).The earliest publication we could find dates back to 1899, by Wilhelm Michaelsen. The most recent publication is 2023. About a third of the sources were written by systematists Iosif Malevich and Tamara Perel. Occurrence data were extracted and structured according to the Darwin Core standard (Wieczorek et al. 2012). During the data digitisation process, we tried to include as much primary information as possible. Only one tenth of the literature occurrences contained the geographic coordinates of locations provided by the authors. The remaining occurrences were manually georeferenced using the point-radius method (Wieczorek et al. 2010).The resulting occurrence dataset Earthworm occurrences from Russian-language literature (Shashkov et al. 2023) was published through the Global Biodiversity Information Facility portal. It contains 5304 occurrences of 117 species from 27 countries (Fig. 1).To improve the GBIF Backbone Taxonomy, we digitised two catalogues of earthworm species published for the USSR (Perel 1979) and Russian Federation (Vsevolodova-Perel 1997) by Tamara Perel. Based on these monographs, three checklist datasets were published through GBIF (Shashkov 2023b, 124 records; Shashkov 2023c, 87 records; Shashkov 2023a, 95 records). Now we work towards including these names in the GBIF Backbone so that all species names can be matched and recorded exactly as mentioned in papers published by Soviet and Russian researchers

    Tree stand assessment before and after windthrow based on open-access biodiversity data and aerial photography

    Get PDF
    The ground-based surveys of areas affected by storms might be difficult or even impossible because of the limited ability to move within the damaged area. Therefore, this work was aimed to estimate storm damage based on aerial photography and open biodiversity data available via the Internet. The study was carried out in the old-growth hemiboreal forests of the Kologrivsky Forest State Nature Reserve (Kostroma Region, Russia), which was affected by a catastrophic windthrow caused by a storm on 15.05.2021. The sampling area was 100 000 m2. We used our previous ground-survey studies and open-access biodiversity data available through the Global Biodiversity Information Facility for describing the forest stands composition before the catastrophic event. The aerial photography data were used for estimating tree stands damages after the windthrow. For remote data collecting, we used an unmanned aerial vehicle – quadrocopter DJI Phantom 4. Agisoft Metashape software was used for aerial photographs processing. The obtained photogrammetric digital elevation model (DEM) and orthophoto-mosaic were processed with QGIS software. Damaged areas were detected automatically based on the DEM. Individual fallen trees were visually detected using the orthophoto-mosaic. We found before the windthrow the study area was covered by old-growth stands developed naturally over a long time. The stand structure was multi-layered and uneven-aged. The ontogenetic spectra of late-successional tree species Picea abies (hereinafter – spruce) and Tilia cordata (hereinafter – linden) were normal. The old-growth stands were heterogeneous before the windthrow: the canopy closed multi-layered and uneven-aged stands, decaying spruce stands and areas where spruce completely fell out and the tree stand was absent. In addition, old-growth linden stands were present. According to the obtained results, the stand structure was critically changed caused by the windthrow. The DEM-processing results showed the windthrow strongly damaged 33.1% stands in the study area. Using the orthophoto-mosaic, we visually detected 759 fallen trees. Among them, 82.9% were associated with strongly-damaged areas. According to the DEM classification, the rest of the visually detected fallen trees were in non-damaged areas and canopy gaps established before the windthrow. The analysis showed that these were less damaged areas with survived stands or groups of trees after the storm. Thus, our results showed that it is necessary to use both the DEM and the orthophoto-mosaic for more accurate estimates. Our exploratory analysis of different tree stand damages found that apparently, spruce stands were more affected by the storm than linden stands. It is explained by the different wind resistance of spruce and linden and differences in regrowth density and species composition in these stands

    Tree diversity patterns along the latitudinal gradient in the northwestern Russia

    Get PDF
    Background One of the key forest characteristics is the biodiversity, particularly the diversity of trees which are forest ecosystem engineers. Nowadays the most worldwide common approach for assessment of forest conditions and dynamics is based on the systematic monitoring, performed at a set of regularly structured plots. To fulfill the existing gap in this sort of knowledge on the Russian forests, an extensive study of tree species diversity on a regular network was conducted in north-west of Russia. Methods The study used the ICP Forests monitoring network that spans over 1700 km along the western Russian border from forest-tundra in the north to broadleaved-coniferous forests in the south. Tree data were collected at 710 sites that were assigned along a regular grid. We performed series of statistical analyses of the tree species distribution and diversity in relation to environmental and anthropogenic factors. Results According to the Maxent species distribution modelling results only Pinus sylvestris, Betula sp. and Picea abies have the potential to grow throughout the study area. The locally maximum tree species diversity varies along the latitudinal gradient from 1 to 3 species in the north to 5–7 species in the south. Monocultural stands are relatively abundant across the study area, being especially common in the south taiga. The prevailing part of the monocultural stands is represented by Scots pine (72%). The age distribution of dominant trees has a clear connection with the intensity of forest use. We found that recent wildfire events had only little effect on tree diversity in the study area. Conclusions We demonstrated that ICP Forests monitoring network enables to successfully establish the main qualitative and quantitative relations of the spatial variation of tree species diversity to climatic, landscape, soil and anthropogenic factors. Analysis of the influence of these factors on tree species distribution allowed us to conclude that with the continuing trend of reducing the frequency and intensity of fires, Norway spruce will further replace Scots pine and Betula sp. in the north-western Russia. Extending the monitoring network, especially adding the time-series context, could provide novel appealing opportunities for forest dynamics projection and sustainable management.Peer reviewe

    Data on 30-year stand dynamics in an old-growth broad-leaved forest in the Kaluzhskie Zaseki State Nature Reserve, Russia

    Get PDF
    The article provides primary data on repeated tree measurements collected during two censuses on a permanent sampling plot (440 m × 200 m) established in the old-growth polydominant broad-leaved forest in the Kaluzhskie Zaseki State Nature Reserve (centre of European Russia). The time span between the inventories was 30 years, and a total of 11 578 individuals of ten tree, one shrub species, and several undefined tree species of three known genera were registered. During the surveys, tree identity, stem diameter at breast height (DBH) of 1.3 m, and life status (alive or dead) were recorded for every tree individual with DBH ≥ 5 cm. Additional attributes were determined for some individuals. Field data were digitised and compiled into the PostgreSQL database. An accurate data quality assessment, validation, and cleaning (with documentation of changes) have been performed before data standardisation according to the Darwin Core standard. Standardised data were published through the GBIF repository. From 1986 to 1988, 9811 individuals were recorded within the initial census, including 3920 Corylus avellana individual shrubs. Corylus avellana shrubs were recorded without measuring DBH. From 2016 to 2018, 7658 stems were recorded in the recensus, including 3090 living trees marked during the initial census, and 1641 other living trees reaching the DBH of at least 5 cm. Corylus avellana was not included in the recensus. Thus, over 30 years, about 65% of living tree individuals have survived, but the total number of living trees has not changed considerably. The mean diameter of shade-intolerant tree species (Quercus robur, Fraxinus excelsior, Populus tremula, and Betula spp.) has increased the most remarkably during 30 years. For these species, the increase in average diameter, along with the decrease in numbers, is associated with the death of young trees, presumably due to low illumination under the canopy. Contrastingly, shade-tolerant tree species (Ulmus glabra, Tilia cordata, Acer platanoides) increased in number, while their mean diameter increased slightly or even decreased, that evidences the successful regeneration of these species under the canopy. These data are relevant for investigating forest ecology questions at spatiotemporal scales as a model of natural succession

    BioDATA - Biodiversity Data for Internationalisation in Higher Education

    Get PDF
    BioDATA is an international project on developing skills in biodiversity data management and data publishing. Between 2018 and 2021, undergraduate and postgraduate students from Armenia, Belarus, Tajikistan, and Ukraine, have an opportunity to take part in the intensive courses to become certified professionals in biodiversity data management. They will gain practical skills and obtain appropriate knowledge on: international data standards (Darwin Core); data cleaning software, data publishing software such as the Integrated Publishing Toolkit (IPT), and preparation of data papers. Working with databases, creating datasets, managing data for statistical analyses and publishing research papers are essential for the everyday tasks of a modern biologist. At the same time, these skills are rarely taught in higher education. Most of the contemporary professionals in biodiversity have to gain these skills independently, through colleagues, or through supervision. In addition, all the participants familiarize themselves with one of the important international research data infrastructures such as the Global Biodiversity Information Facility (GBIF). The project is coordinated by the University of Oslo (Norway) and supported by the Global Biodiversity Information Facility (GBIF). The project is funded by the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (DIKU)

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Contribution of Citizen Science to Biodiversity Data Mobilization in Russia

    No full text
    Currently Russia doesn't have a national biodiversity information system, and is still not a GBIF (Global Biodiversity Information Facility) member. Nevertheless, GBIF is the largest source of biodiversity data for Russia. As of August 2020, >5M species occurrences were available through the GBIF portal, of which 54% were published by Russian organisations. There are 107 institutions from Russia that have become GBIF publishers and 357 datasets have been published. The important trend of data mobilization in Russia is driven by the considerable contribution of citizen science. The most popular platform is iNaturalist. This year, the related GBIF dataset (Ueda 2020) became the largest one for Russia (793,049 species occurrences as of 2020-08-11). The first observation for Russia was posted in 2011, but iNaturalist started becoming popular in 2017. That year, 88 observers added >4500 observations that represented 1390 new species for Russia, 7- and 2-fold more respectively, than for the previous 6 years. Now we have nearly 12,000 observers, about 15,000 observed species and >1M research-grade observations. The ratio of observations for Tracheophyta, Chordata, and Arthropoda in Russia is different compared to the global scale. There are almost an equal amount of observations in the global iNaturalist GBIF dataset for these groups. At the same time in Russia, vascular plants make up 2/3rds of the observations. That is due to the "Flora of Russia" project, which attracted many professional botanists both as observers and experts. Thanks to their activity, Russia has a high proportion of research-grade observations in iNaturalist, 78% versus 60% globally. Another consequence of wide participation by professional researchers is the high rate of species accumulation. For some taxonomic groups conspicuous species were already revealed. There are about 850 bird species in Russia of which 398 species were observed in 2018, and only 83 new species in 2019. Currently, the number of new species recorded over time is decreasing despite the increase in observers and overall user activity.Russian iNaturalist observers have shared a lot of archive photos (taken during past years). In 2018, it was nearly 1/4 of the total number of observations and about 3/4 of new species for the year, with similar trends observed during 2019. Usually archive photos are posted from December until April, but the 2020 pandemic lockdown spurred a new wave of archive photo mobilisation in April and May. There are many iNaturalist projects for protected areas in Russia: 27 for strict nature reserves and national parks, and about 300 for others. About 100,000 observations (7.5% of all Russian observations) from the umbrella project "Protected areas of Russia" represent >34% of the species diversity observed in Russia. For some regions, e.g., Novosibirsk, Nizhniy Novgorod and Vladimir Oblasts, almost all protected areas are covered by iNaturalist projects, and are often their only source of available biodiversity data. There are also other popular citizen science platforms developed by Russian researchers. The first one is the Russian birdwatching network RU-BIRDS.RU. The related GBIF dataset (Ukolov et al. 2019) is the third largest dataset for Russia (>370,000 species occurrences). Another Russian citizen science system is wildlifemonitoring.ru, which includes thematic resources for different taxonomic groups of vertebrates. This is the crowd-sourced web-GIS maintained by the Siberian Environmental Center NGO in Novosibirsk.It is noteworthy that iNaturalist activities in Russia are developed more as a social network than as a way to attract volunteers to participate in scientific research. Of 746 citations in the iNaturalist dataset, only 18 articles include co-authors from Russia. iNaturalist data are used for the management of regional red lists (in the Republic of Bashkortostan, Novosibirsk Oblast and others), and as an additional information source for regional inventories. RU-BIRDS data were used in the European Russia Breeding Bird Atlas and the new edition of the European Breeding Bird Atlas.In Russia, citizen science activities significantly contribute to filling gaps in the global biodiversity map. However, Russian iNaturalist observations available through GBIF originate from the USA. It is not ideal, because the iNaturalist GBIF dataset is growing rapidly, and in the future it will represent more than all other datasets for Russia combined. In our opinion, iNaturalist data should be repatriated during the process of publishing through GBIF, as it is implemented for the eBird dataset (Levatich and Ligocki 2020)
    corecore