461 research outputs found

    Investigation of optimal sample preparation conditions with potassium triiodide and optimal imaging settings for microfocus computed tomography of excised cat hearts

    Get PDF
    OBJECTIVE: To determine optimal sample preparation conditions with potassium triiodide (I2KI) and optimal imaging settings for microfocus CT (micro-CT) of excised cat hearts. SAMPLE 7 excised hearts (weight range, 10 to 17.6 g) obtained from healthy adult cats after euthanasia by IV injection of pentobarbital sodium. PROCEDURES: Following excision, the hearts were preserved in 10% formaldehyde solution. Six hearts were immersed in 1.25% I2KI solution (n = 3) or 2.5% I2KI solution (3) for a 12-day period. Micro-CT images were acquired at time 0 (prior to iodination) then approximately every 24 and 48 hours thereafter to determine optimal sample preparation conditions (ie, immersion time and concentration of I2KI solution). Identified optimal conditions were then used to prepare the seventh heart for imaging; changes in voltage, current, exposure time, and gain on image quality were evaluated to determine optimal settings (ie, maximal signal-to-noise and contrast-to-noise ratios). Images were obtained at a voxel resolution of 30 mm. A detailed morphological assessment of the main cardiac structures of the seventh heart was then performed. RESULTS: Immersion in 2.5% I2KI solution for 48 hours was optimal for sample preparation. The optimal imaging conditions included a tube voltage of 100 kV, current of 150 mA, and exposure time of 354 milliseconds; scan duration was 12 minutes. CONCLUSIONS AND CLINICAL RELEVANCE: Results provided an optimal micro-CT imaging protocol for excised cat hearts prepared with I2KI solution that could serve as a basis for future studies of micro-CT for high resolution 3-D imaging of cat hearts

    Shape Analysis and Computational Fluid Simulations to Assess Feline Left Atrial Function and Thrombogenesis

    Get PDF
    In humans, there is a well-established relationship between atrial fibrillation (AF), blood flow abnormalities and thrombus formation, even if there is no clear consensus on the role of left atrial appendage (LAA) morphologies. Cats can also suffer heart diseases, often leading to an enlargement of the left atrium that promotes stagnant blood flow, activating the clotting process and promoting feline aortic thromboembolism. The majority of pathological feline hearts have echocardiographic evidence of abnormal left ventricular filling, usually assessed with 2D and Doppler echocardiography and standard imaging tools. Actually, veterinary professionals have limited access to advanced computational techniques that would enable a better understanding of feline heart pathologies with improved morphological and haemodynamic descriptors. In this work, we applied state-of-the-art image processing and computational fluid simulations based on micro-computed tomography images acquired in 24 cases, including normal cats and cats with varying severity of cardiomyopathy. The main goal of the study was to identify differences in the LA/LAA morphologies and blood flow patterns in the analysed cohorts with respect to thrombus formation and cardiac pathology. The obtained results show significant differences between normal and pathological feline hearts, as well as in thrombus vs non-thrombus cases and asymptomatic vs symptomatic cases, while it was not possible to discern in congestive heart failure with thrombus and from non-thrombus cases. Additionally, in-silico fluid simulations demonstrated lower LAA blood flow velocities and higher thrombotic risk in the thrombus cases

    Uncoordinated Loss of Chromatid Cohesion Is a Common Outcome of Extended Metaphase Arrest

    Get PDF
    Chromosome segregation requires coordinated separation of sister chromatids following biorientation of all chromosomes on the mitotic spindle. Chromatid separation at the metaphase-to-anaphase transition is accomplished by cleavage of the cohesin complex that holds chromatids together. Here we show using live-cell imaging that extending the metaphase bioriented state using five independent perturbations (expression of non-degradable Cyclin B, expression of a Spindly point mutant that prevents spindle checkpoint silencing, depletion of the anaphase inducer Cdc20, treatment with a proteasome inhibitor, or treatment with an inhibitor of the mitotic kinesin CENP-E) leads to eventual scattering of chromosomes on the spindle. This scattering phenotype is characterized by uncoordinated loss of cohesion between some, but not all sister chromatids and subsequent spindle defects that include centriole separation. Cells with scattered chromosomes persist long-term in a mitotic state and eventually die or exit. Partial cohesion loss-associated scattering is observed in both transformed cells and in karyotypically normal human cells, albeit at lower penetrance. Suppressing microtubule dynamics reduces scattering, suggesting that cohesion at centromeres is unable to resist dynamic microtubule-dependent pulling forces on the kinetochores. Consistent with this view, strengthening cohesion by inhibiting the two pathways responsible for its removal significantly inhibits scattering. These results establish that chromosome scattering due to uncoordinated partial loss of chromatid cohesion is a common outcome following extended arrest with bioriented chromosomes in human cells. These findings have important implications for analysis of mitotic phenotypes in human cells and for development of anti-mitotic chemotherapeutic approaches in the treatment of cancer

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Measurement of jet fragmentation into charged particles in pp and PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    Jet fragmentation in pp and PbPb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair was studied using data collected with the CMS detector at the LHC. Fragmentation functions are constructed using charged-particle tracks with transverse momenta pt > 4 GeV for dijet events with a leading jet of pt > 100 GeV. The fragmentation functions in PbPb events are compared to those in pp data as a function of collision centrality, as well as dijet-pt imbalance. Special emphasis is placed on the most central PbPb events including dijets with unbalanced momentum, indicative of energy loss of the hard scattered parent partons. The fragmentation patterns for both the leading and subleading jets in PbPb collisions agree with those seen in pp data at 2.76 TeV. The results provide evidence that, despite the large parton energy loss observed in PbPb collisions, the partition of the remaining momentum within the jet cone into high-pt particles is not strongly modified in comparison to that observed for jets in vacuum.Comment: Submitted to the Journal of High Energy Physic
    • …
    corecore